Vol. 110
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2023-06-13
A Loaded Line 2-Bit Phase Shifter Using RF MEMS DC/Capacitive Switches
By
Progress In Electromagnetics Research Letters, Vol. 110, 127-135, 2023
Abstract
This letter presents the fabrication and measurement of a novel loaded line phase shifter design providing four different phase shifts using only two RF MEMS switches. The flexibility of choosing DC or capacitive load depending upon the phase shift required in a single RF MEMS switch makes the phase shifter compact and requires less no. of proposed switches. The RF MEMS Switch has been designed to provide isolation better than 10 dB in both DC and capacitive states from 16 to 45 GHz. Due to the designed RF MEMS beam switching between DC and capacitive loading, the proposed phase shifter provides a 2-bit phase shift using only two switches. The measured phase shifter has the maximum insertion loss of 0.8 dB with a bandwidth of 8 GHz from 16 to 24 GHz. The return loss is better than 10 dB for all four states. The maximum Root-Mean-Square (RMS) insertion loss error is 0.28 dB, and the phase shift error is 0.98º. The proposed phase shifter is fabricated using the surface micromachining on the sapphire substrate and occupies an area of 3.931 mm2.
Citation
Niharika Narang, Pranav K. Shrivastava, Ananjan Basu, and Pushpapraj Singh, "A Loaded Line 2-Bit Phase Shifter Using RF MEMS DC/Capacitive Switches," Progress In Electromagnetics Research Letters, Vol. 110, 127-135, 2023.
doi:10.2528/PIERL23021801
References

1. Rebeiz, G. M., RF MEMS: Theory, Design, and Technology, 3rd Ed., 259-290, John Wiley & Sons, New Jersey, USA, 2003.
doi:10.1002/0471225282.ch9

2. Qing, Z. Y., L. Han, L. F. Wang, J. Y. Tang, and Q. A. Huang, "A novel three-state RF MEMS switch for ultrabroadband (DC-40 GHz) applications," IEEE Electron Device Letters, Vol. 34, No. 7, 1062-1064, 2013, http://doi.org/10.1109/LED.2013.2269993.

3. Afrang, O. R., S. Afrang, and A. A. Hamzah, "Very small size capacitive DMTL phase shifters using a new approach," Microsystem Technologies, Vol. 28, No. 8, 2107-2122, 2022, http://doi.org/10.1007/s00542-022-05354-0.
doi:10.1007/s00542-022-05354-0

4. Guo, L., H. Zhu, and A. Abbosh, "Wideband phase shifter with wide phase range using parallel coupled lines and L-shaped networks," IEEE Microwave and Wireless Components Letters, Vol. 26, No. 7, 592-594, 2016, http://doi.org/10.1109/LMWC.2016.2587833.
doi:10.1109/LMWC.2016.2587833

5. Kim, H. T., J. H. Park, J. Yim, Y. K. Kim, and Y. Kwon, "A compact V-band 2-bit reflection-type MEMS phase shifter," IEEE Microwave, and Wireless Components Letters, Vol. 12, No. 8, 324-326, 2002, http://doi.org/10.1109/LMWC.2002.803198.

6. Müller, D., P. Pahl, A. Tessmann, A. Leuther, T. Zwick, and I. Kallfass, "A WR3-band 2-bit phase shifter based on active SPDT switches," IEEE Microwave and Wireless Components Letters, Vol. 28, No. 8, 810-812, 2018, http://doi.org/10.1109/LMWC.2018.2853085.
doi:10.1109/LMWC.2018.2853085

7. Gong, S., H. Shen, and N. S. Barker, "A 60-GHz 2-bit switched-line phase shifter using SP4T RF-MEMS switches," IEEE Transactions on Microwave Theory and Techniques, Vol. 59, No. 4, 894-900, 2011, http://doi.org/10.1109/TMTT.2011.2112374.
doi:10.1109/TMTT.2011.2112374

8. Unlu, M., S. Demir, and T. Akin, "A 15-40-GHz frequency reconfigurable RF MEMS phase shifter," IEEE Transactions on Microwave Theory and Techniques, Vol. 61, No. 7, 2865-2877, 2013, http://doi.org/10.1109/TMTT.2013.2271995.
doi:10.1109/TMTT.2013.2271995

9. Kumar, S., D. S. Arya, and P. Singh, "Volatile or non-volatile switching? Establishing design parameters for metal-contact relays using ON/OFF hysteretic behavior (RT to 300ºC)," Applied Physics Letters, Vol. 118, No. 1, 0135051-5, 2021, http://doi.org/10.1063/5.0025062.
doi:10.1063/5.0025062

10. Shrivastava, P. K., S. K. Koul, and M. P. Abegaonkar, "Compact K-band lange coupler based 2-bit RF MEMS reflection-type phase shifter," 2018 IEEE MTT-S International Microwave and RF Conference (IMaRC), 1-4, 2018, http://doi.org/10.1109/IMaRC.2018.8877134.

11. Prithivirajan, V., P. Venkatakrishnan, and A. Punitha, "Low loss 2-bit distributed MEMS phase shifter using chamfered transmission line," Indian Journal of Science and Technology, Vol. 8, No. 5, 510-517, 2015, http://doi.org/10.17485/ijst/2015/v8i6/70112.
doi:10.17485/ijst/2015/v8i6/70112

12. Hu, J., Y. Li, and Z. Zhang, "A novel reconfigurable miniaturized phase shifter for 2-D beam steering 2-bit array applications," IEEE Microwave and Wireless Components Letters, Vol. 31, No. 4, 381-384, 2021, https://doi.org/10.1109/LMWC.2021.3057223.
doi:10.1109/LMWC.2021.3057223

13. Li, X., K. Y. Chan, and R. Ramer, "E-band RF MEMS differential reflection-type phase shifter," IEEE Transactions on Microwave Theory and Techniques, Vol. 67, No. 12, 4700-4713, 2019, https://doi.org/10.1109/TMTT.2019.2944623.
doi:10.1109/TMTT.2019.2944623