Vol. 133
Latest Volume
All Volumes
PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-06-16
A Control Method of Switched Reluctance Motor Based on Non-Unity TSF and Adaptive Overlapping Angle
By
Progress In Electromagnetics Research C, Vol. 133, 233-249, 2023
Abstract
Aiming at the problems of conventional torque sharing function (TSF) control method, such as large torque ripple, high peak current and high copper loss, a non-unity TSF control method with adaptive overlapping angle is proposed. Firstly, on the basis of explaining the conventional TSF control logic, according to the characteristics of inductance, the conduction region is re-divided, and the two-phase exchange region is subdivided into region 1 and region 2, which together with the single-phase conduction region form three regions in the winding conduction region. A non-unity TSF is designed in each region, which conforms to the torque variation trend. Then, an adaptive overlapping angle algorithm is designed, which can automatically adjust the overlapping angle under different speeds and load torques. Finally, taking a three-phase 6/20-pole switched reluctance motor as the control object, the simulation and experimental verification show that the control method can restrain torque ripple and reduce peak current and copper loss at the same time.
Citation
Chaozhi Huang, Wensheng Cao, Yanwen Sun, Zhou Chen, and Wenjin Zhang, "A Control Method of Switched Reluctance Motor Based on Non-Unity TSF and Adaptive Overlapping Angle," Progress In Electromagnetics Research C, Vol. 133, 233-249, 2023.
doi:10.2528/PIERC23021802
References

1. Boldea, I., L. N. Tutelea, L. Parsa, and D. Dorrell, "Automotive electric propulsion systems with reduced or no permanent magnets: An overview," IEEE Transactions on Industrial Electronics, Vol. 61, No. 10, 5696-5711, 2014.
doi:10.1109/TIE.2014.2301754

2. Omac, Z., M. Polat, E. Oksuztepe, M. Yildirim, O. Yakut, H. Eren, M. Kaya, and H. Kurum, "Design, analysis, and control of in-wheel switched reluctance motor for electric vehicles," Electrical Engineering, Vol. 100, No. 2, 865-876, 2018.
doi:10.1007/s00202-017-0541-3

3. Santiago, J. D., H. Bernhoff, B. Ekergard, S. Eriksson, S. Ferhatovic, R. Waters, and M. Leijon, "Electrical motor drivelines in commercial all-electric vehicles: A review," IEEE Transactions on Vehicular Technology, Vol. 61, No. 2, 475-484, 2012.
doi:10.1109/TVT.2011.2177873

4. De Paula, M. V., T. A. Barros, H. S. Moreira, et al. "A dahlin cruise control design method for switched reluctance motors with minimum torque ripple point tracking applied in electric vehicles," IEEE Transactions on Transportation Electrification, Vol. 7, No. 2, 730-740, 2021.
doi:10.1109/TTE.2020.3019997

5. Vaibhav, S. and P. Saifullah, "An integrated driving/charging four-phase switched reluctance motor drive with reduced current sensors for electric vehicle application," IEEE Journal of Emerging and Selected Topics In Power Electronics, Vol. 10, No. 6, 6880-6890, 2022.
doi:10.1109/JESTPE.2021.3120468

6. Cheok, A. D. and Y. Fukuda, "A new torque and flux control method for switched reluctance motor drives," IEEE Transactions on Power Electronics, Vol. 17, No. 4, 543-557, 2002.
doi:10.1109/TPEL.2002.800968

7. Yan, N., X. Cao, and Z. Deng, "Direct torque control for switched reluctance motor to obtain high torque-ampere ratio," IEEE Transactions on Industrial Electronics, Vol. 66, No. 7, 5144-5152, 2019.
doi:10.1109/TIE.2018.2870355

8. Chen, X., Z. Zhang, L. Yu, and Z. Bian, "An improved direct instantaneous torque control of doubly salient electromagnetic machine for torque ripple reduction," IEEE Transactions on Industrial Electronics, Vol. 68, No. 8, 6481-6492, 2021.
doi:10.1109/TIE.2020.3003596

9. Tao, T., S. Gan, J.Wang, X. Song, J. Zhang, and Z. Sun, "Angle position control of fuzzy algorithm with variable scale factor for SRM," ICIC Express Letters, No. 4, 789-797, 2017.

10. Yang, D. H. Y., D. Zhao, and Y. X. Jiang, "A research for angle optimization of the SRM used in electric actuator of valves," Applied Mechanics and Materials, 586-591, 2013.

11. Blaabjerg, F., P. C. Kjaer, P. O. Rasmussen, and C. Cossar, "Improved digital current control methods in switched reluctance motor drives," IEEE Transactions on Power Electronics, Vol. 14, No. 3, 563-572, 1999.
doi:10.1109/63.761700

12. Cai, J.-L. and R.-J. Jin, "Reversible drive system of switched reluctance motor based on DSP controller," Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), No. 6, 1019-1026, 2006.

13. Mohamed, Y. A. R. I. and E. F. El-Saadany Robust, "High bandwidth discrete-time predictive current control with predictive internal model --- A unified approach for voltage-source PWM converters," IEEE Transactions on Power Electronics, Vol. 23, No. 1, 126-136, 2008.
doi:10.1109/TPEL.2007.911797

14. Peng, F., J. Ye, and A. Emadi, "A digital PWM current controller for switched reluctance motor drives," IEEE Transactions on Power Electronics, Vol. 31, No. 10, 7087-7098, 2016.

15. Schulz, S. E. and K. M. Rahman, "High-performance digital PI current regulator for EV switched reluctance motor drives," IEEE Transactions on Industry Applications, Vol. 39, No. 4, 1118-1126, 2003.
doi:10.1109/TIA.2003.814580

16. Xue, X. D., K. W. E. Cheng, S. L. Ho, and , "Optimization and evaluation of torque-sharing functions for torque ripple minimization in switched reluctance motor drives," IEEE Transactions on Power Electronics, Vol. 24, No. 9, 2076-2090, 2009.
doi:10.1109/TPEL.2009.2019581

17. Ling, X., C. Zhou, L. Yang, and J. Zhang, "Torque ripple suppression method of switched reluctance motor based on an improved torque distribution function," Applied Sciences, Vol. 11, No. 10, 136-152, 2022.

18. Li, H., B. Bilgin, and A. Emadi, "An improved torque sharing function for torque ripple reduction in switched reluctance machines," IEEE Transactions on Power Electronics, Vol. 34, No. 2, 1635-1644, 2019.
doi:10.1109/TPEL.2018.2835773

19. Yang, Y., A. Xu, B. Leng, J. Sun, and K. Li, "Torque compensation method of switched reluctance motor adopting MPC based on TSF-DITC," Progress In Electromagnetics Research M, Vol. 110, 211-221, 2022.
doi:10.2528/PIERM22040803

20. Sun, Q., J. Wu, C. Gan, Y. Hu, and J. Si, "OCTSF for torque ripple minimisation in SRMs," IET Power Electronics, Vol. 14, 2741-2750, 2016.
doi:10.1049/iet-pel.2016.0270

21. Fei, C., J. Yan, P. Wang, and Z. Yan, "Torque ripple suppression of switched reluctance motor based on modified torque sharing function," Diangong Jishu Xuebao/Transactions of China Electrotechnical Society, Vol. 33, 394-400, 2018.

22. Ro, H. S., K. G. Lee, J. S. Lee, H. G. Jeong, and K. B. Lee, "Torque ripple minimization scheme using torque sharing function based fuzzy logic control for a switched reluctance motor," Journal of Electrical Engineering & Technology, Vol. 10, No. 1, 118-127, 2015.
doi:10.5370/JEET.2015.10.1.118