1. Boldea, I., L. N. Tutelea, L. Parsa, and D. Dorrell, "Automotive electric propulsion systems with reduced or no permanent magnets: An overview," IEEE Transactions on Industrial Electronics, Vol. 61, No. 10, 5696-5711, 2014.
doi:10.1109/TIE.2014.2301754 Google Scholar
2. Omac, Z., M. Polat, E. Oksuztepe, M. Yildirim, O. Yakut, H. Eren, M. Kaya, and H. Kurum, "Design, analysis, and control of in-wheel switched reluctance motor for electric vehicles," Electrical Engineering, Vol. 100, No. 2, 865-876, 2018.
doi:10.1007/s00202-017-0541-3 Google Scholar
3. Santiago, J. D., H. Bernhoff, B. Ekergard, S. Eriksson, S. Ferhatovic, R. Waters, and M. Leijon, "Electrical motor drivelines in commercial all-electric vehicles: A review," IEEE Transactions on Vehicular Technology, Vol. 61, No. 2, 475-484, 2012.
doi:10.1109/TVT.2011.2177873 Google Scholar
4. De Paula, M. V., T. A. Barros, H. S. Moreira, et al. "A dahlin cruise control design method for switched reluctance motors with minimum torque ripple point tracking applied in electric vehicles," IEEE Transactions on Transportation Electrification, Vol. 7, No. 2, 730-740, 2021.
doi:10.1109/TTE.2020.3019997 Google Scholar
5. Vaibhav, S. and P. Saifullah, "An integrated driving/charging four-phase switched reluctance motor drive with reduced current sensors for electric vehicle application," IEEE Journal of Emerging and Selected Topics In Power Electronics, Vol. 10, No. 6, 6880-6890, 2022.
doi:10.1109/JESTPE.2021.3120468 Google Scholar
6. Cheok, A. D. and Y. Fukuda, "A new torque and flux control method for switched reluctance motor drives," IEEE Transactions on Power Electronics, Vol. 17, No. 4, 543-557, 2002.
doi:10.1109/TPEL.2002.800968 Google Scholar
7. Yan, N., X. Cao, and Z. Deng, "Direct torque control for switched reluctance motor to obtain high torque-ampere ratio," IEEE Transactions on Industrial Electronics, Vol. 66, No. 7, 5144-5152, 2019.
doi:10.1109/TIE.2018.2870355 Google Scholar
8. Chen, X., Z. Zhang, L. Yu, and Z. Bian, "An improved direct instantaneous torque control of doubly salient electromagnetic machine for torque ripple reduction," IEEE Transactions on Industrial Electronics, Vol. 68, No. 8, 6481-6492, 2021.
doi:10.1109/TIE.2020.3003596 Google Scholar
9. Tao, T., S. Gan, J.Wang, X. Song, J. Zhang, and Z. Sun, "Angle position control of fuzzy algorithm with variable scale factor for SRM," ICIC Express Letters, No. 4, 789-797, 2017. Google Scholar
10. Yang, D. H. Y., D. Zhao, and Y. X. Jiang, "A research for angle optimization of the SRM used in electric actuator of valves," Applied Mechanics and Materials, 586-591, 2013. Google Scholar
11. Blaabjerg, F., P. C. Kjaer, P. O. Rasmussen, and C. Cossar, "Improved digital current control methods in switched reluctance motor drives," IEEE Transactions on Power Electronics, Vol. 14, No. 3, 563-572, 1999.
doi:10.1109/63.761700 Google Scholar
12. Cai, J.-L. and R.-J. Jin, "Reversible drive system of switched reluctance motor based on DSP controller," Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), No. 6, 1019-1026, 2006. Google Scholar
13. Mohamed, Y. A. R. I. and E. F. El-Saadany Robust, "High bandwidth discrete-time predictive current control with predictive internal model --- A unified approach for voltage-source PWM converters," IEEE Transactions on Power Electronics, Vol. 23, No. 1, 126-136, 2008.
doi:10.1109/TPEL.2007.911797 Google Scholar
14. Peng, F., J. Ye, and A. Emadi, "A digital PWM current controller for switched reluctance motor drives," IEEE Transactions on Power Electronics, Vol. 31, No. 10, 7087-7098, 2016. Google Scholar
15. Schulz, S. E. and K. M. Rahman, "High-performance digital PI current regulator for EV switched reluctance motor drives," IEEE Transactions on Industry Applications, Vol. 39, No. 4, 1118-1126, 2003.
doi:10.1109/TIA.2003.814580 Google Scholar
16. Xue, X. D., K. W. E. Cheng, S. L. Ho, and , "Optimization and evaluation of torque-sharing functions for torque ripple minimization in switched reluctance motor drives," IEEE Transactions on Power Electronics, Vol. 24, No. 9, 2076-2090, 2009.
doi:10.1109/TPEL.2009.2019581 Google Scholar
17. Ling, X., C. Zhou, L. Yang, and J. Zhang, "Torque ripple suppression method of switched reluctance motor based on an improved torque distribution function," Applied Sciences, Vol. 11, No. 10, 136-152, 2022. Google Scholar
18. Li, H., B. Bilgin, and A. Emadi, "An improved torque sharing function for torque ripple reduction in switched reluctance machines," IEEE Transactions on Power Electronics, Vol. 34, No. 2, 1635-1644, 2019.
doi:10.1109/TPEL.2018.2835773 Google Scholar
19. Yang, Y., A. Xu, B. Leng, J. Sun, and K. Li, "Torque compensation method of switched reluctance motor adopting MPC based on TSF-DITC," Progress In Electromagnetics Research M, Vol. 110, 211-221, 2022.
doi:10.2528/PIERM22040803 Google Scholar
20. Sun, Q., J. Wu, C. Gan, Y. Hu, and J. Si, "OCTSF for torque ripple minimisation in SRMs," IET Power Electronics, Vol. 14, 2741-2750, 2016.
doi:10.1049/iet-pel.2016.0270 Google Scholar
21. Fei, C., J. Yan, P. Wang, and Z. Yan, "Torque ripple suppression of switched reluctance motor based on modified torque sharing function," Diangong Jishu Xuebao/Transactions of China Electrotechnical Society, Vol. 33, 394-400, 2018. Google Scholar
22. Ro, H. S., K. G. Lee, J. S. Lee, H. G. Jeong, and K. B. Lee, "Torque ripple minimization scheme using torque sharing function based fuzzy logic control for a switched reluctance motor," Journal of Electrical Engineering & Technology, Vol. 10, No. 1, 118-127, 2015.
doi:10.5370/JEET.2015.10.1.118 Google Scholar