Vol. 117
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2023-06-20
A Circular Split Ring Resonator Absorber with Graphene Material for Terahertz Communication Applications
By
Progress In Electromagnetics Research M, Vol. 117, 119-128, 2023
Abstract
In this research article, we propose a split ring resonator (SRR) based metasurface absorber based on graphene material. The performance of the graphene-based absorber at terahertz frequencies can be altered by varying the chemical potential of graphene material. Because of its excellent tunability and optical responsiveness at terahertz frequency, graphene-based metamaterials have been widely used in optoelectronic devices, sensors, filters, and many more. The proposed structure contains three layers namely graphene-based patch as a conductive layer, lossy silicon as a dielectric layer, and finally gold as a bottom conductive layer. The proposed unit cell resonates at three different absorption peak frequencies of 2.91 THz, 8.1 THz, and 9.61 THz with operating frequency bands at (2.66 THz to 3.12 THz), (7.71 THz-8.47 THz), and (9.57 THz-9.63 THz), respectively. The purpose of this research is to present a thorough investigation of graphene-based THz metamaterial absorbers, including modeling and verification of the structure through an equivalent circuit approach. It is very much beneficial to understand the conductive phenomenon of graphene material by tuning the Fermi chemical potential and achieve a high percent level of absorption for the corresponding absorption frequency bands.
Citation
Nagandla Prasad, Pokkunuri Pardhasaradhi, Boddapati Taraka Phani Madhav, Yarlagadda Ramakrishna, and Yepuri Aarthi Hasitha, "A Circular Split Ring Resonator Absorber with Graphene Material for Terahertz Communication Applications," Progress In Electromagnetics Research M, Vol. 117, 119-128, 2023.
doi:10.2528/PIERM23042105
References

1. Roy, S. and K. Debnath, "Electromechanically tunable graphene-based terahertz metasurface," Optics Communications, Vol. 534, 129319, 2023.
doi:10.1016/j.optcom.2023.129319

2. Cornejo, H. S., L. De Los Santos Valladares, V. S. Kamboj, A. Bustamante Dominguez, J. C. González, A. M. Osorio Anaya, N. O. Moreno, et al. "Texture and terahertz analysis of YBa2Cu3O7 grown onto LaAlO3 by the chemical solution deposition," Heat Treatment, Vol. 3, No. 1, 1-8, 2022.

3. Shur, M. S., "Terahertz plasmonic technology," IEEE Sensors Journal, Vol. 21, No. 11, 12752-12763, 2020.
doi:10.1109/JSEN.2020.3022809

4. Latha, A. M., S. Unnikrishnakurup, A. Jain, M. K. Pathra, and K. Balasubramaniam, "Material characterization and thickness measurement of iron particle reinforced polyurethane multi-layer coating for aircraft stealth applications using THz --- Time domain spectroscopy," Journal of Infrared, Millimeter, and Terahertz Waves, Vol. 43, No. 7-8, 582-597, 2022.
doi:10.1007/s10762-022-00874-2

5. Patel, S. K., J. Surve, and J. Parmar, "Detection of cancer with graphene metasurface-based highly efficient sensors," Diamond and Related Materials, Vol. 129, 109367, 2022.
doi:10.1016/j.diamond.2022.109367

6. Strag, M. and W. Swiderski, "Defect detection in aramid fiber-reinforced composites via terahertz radiation," Journal of Nondestructive Evaluation, Vol. 42, No. 1, 2023.
doi:10.1007/s10921-022-00917-7

7. Ergün, S. and S. Sönmez, "Terahertz technology for military applications," Journal of Management and Information Science, Vol. 3, No. 1, 13-16, 2015.

8. Xu, C., Z. Ren, J. Wei, and C. Lee, "Reconfigurable terahertz metamaterials: From fundamental principles to advanced 6G applications," Iscience, Vol. 25, No. 2, 103799, 2022.
doi:10.1016/j.isci.2022.103799

9. Sabah, C., B. Mulla, H. Altan, and L. Ozyuzer, "Cross-like terahertz metamaterial absorber for sensing applications," Pramana, Vol. 91, 1-7, 2018.
doi:10.1007/s12043-018-1591-4

10. Zhou, S., K. Bi, Q. Li, L. Mei, Y. Niu, W. Fu, S. Han, et al. "Patterned graphene-based metamaterials for terahertz wave absorption," Coatings, Vol. 13, No. 1, 59, 2023.
doi:10.3390/coatings13010059

11. Li, J., Y. Liu, Y. Chen, W. Chen, H. Guo, Q. Wu, and M. Li, "Tunable broadband-narrowband and dual-broadband terahertz absorber based on a hybrid metamaterial vanadium dioxide and graphene," Micromachines, Vol. 14, No. 1, 201, 2023.
doi:10.3390/mi14010201

12. Zhang, Z., Q. Sun, Y. Fan, Z. Zhu, J. Zhang, X. Yuan, and C. Guo, "Low-threshold and high-extinction-ratio optical bistability within a graphene-based perfect absorber," Nanomaterials, Vol. 13, No. 3, 389, 2023.
doi:10.3390/nano13030389

13. Upender, P. and A. Kumar, "THz dielectric metamaterial sensor with high Q for biosensing applications," IEEE Sensors Journal, 2023.

14. Beheshti Asl, A., D. Pourkhalil, A. Rostami, and H. Mirtaghioglu, "A perfect electrically tunable graphene-based metamaterial absorber," Journal of Computational Electronics, Vol. 20, 864-872, 2021.
doi:10.1007/s10825-021-01664-0

15. Yi, Z., J. Chen, C. Cen, X. Chen, Z. Zhou, Y. Tang, X. Ye, S. Xiao, W. Luo, and P. Wu, "Tunable graphene-based plasmonic perfect metamaterial absorber in the THz region," Micromachines, Vol. 10, No. 3, 194, 2019.
doi:10.3390/mi10030194

16. Ashvanth, B., B. Partibane, and G. Idayachandran, "Designing miniaturized metamaterial absorber with tunable multiband characteristics for THz applications," Bulletin of Materials Science, Vol. 44, 1-8, 2021.

17. Xu, K.-D., Y. Cai, X. Cao, Y. Guo, Y. Zhang, and Q. Chen, "Multiband terahertz absorbers using T-shaped slot-patterned graphene and its complementary structure," JOSA B, Vol. 37, No. 10, 3034-3040, 2020.
doi:10.1364/JOSAB.404062

18. Jain, P., K. Prakash, G. M. Khanal, N. Sardana, S. Kumar, N. Gupta, and A. K. Singh, "Quad-band polarization sensitive terahertz metamaterial absorber using Gemini-shaped structure," Results in Optics, Vol. 8, 100254, 2022.
doi:10.1016/j.rio.2022.100254

19. Wang, J., T. Lang, Z. Hong, M. Xiao, and J. Yu, "Design and fabrication of a triple-band terahertz metamaterial absorber," Nanomaterials, Vol. 11, No. 5, 1110, 2021.
doi:10.3390/nano11051110

20. Abdulkarim, Y. I., M. Xiao, H. N. Awl, F. F. Muhammadsharif, T. Lang, S. R. Saeed, F. Alkurt, M. Bakir, M. Karaaslan, and J. Dong, "Simulation and lithographic fabrication of a triple band terahertz metamaterial absorber coated on flexible polyethylene terephthalate substrate," Optical Materials Express, Vol. 12, No. 1, 338-359, 2022.
doi:10.1364/OME.447855

21. Li, H. and J. Yu, "Active dual-tunable broadband absorber based on a hybrid graphene-vanadium dioxide metamaterial," OSA Continuum, Vol. 3, No. 7, 2143-2155, Aug. 15, 2020.

22. Nickpay, M. R., M. Danaie, and A. Shahzadi, "A wideband and polarization-insensitive graphene-based metamaterial absorber," Superlattices and Microstructures, Vol. 150, 106786, Feb. 1, 2021.

23. Zhuang, S., X. Li, T. Yang, L. Sun, O. Kosareva, C. Gong, and W. Liu, "Graphene-based absorption --- Transmission multi-functional tunable THz metamaterials," Micromachines, Vol. 13, No. 7, 1239, Aug. 1, 2022.