1. Roy, S. and K. Debnath, "Electromechanically tunable graphene-based terahertz metasurface," Optics Communications, Vol. 534, 129319, 2023.
doi:10.1016/j.optcom.2023.129319 Google Scholar
2. Cornejo, H. S., L. De Los Santos Valladares, V. S. Kamboj, A. Bustamante Dominguez, J. C. González, A. M. Osorio Anaya, N. O. Moreno, et al. "Texture and terahertz analysis of YBa2Cu3O7 grown onto LaAlO3 by the chemical solution deposition," Heat Treatment, Vol. 3, No. 1, 1-8, 2022. Google Scholar
3. Shur, M. S., "Terahertz plasmonic technology," IEEE Sensors Journal, Vol. 21, No. 11, 12752-12763, 2020.
doi:10.1109/JSEN.2020.3022809 Google Scholar
4. Latha, A. M., S. Unnikrishnakurup, A. Jain, M. K. Pathra, and K. Balasubramaniam, "Material characterization and thickness measurement of iron particle reinforced polyurethane multi-layer coating for aircraft stealth applications using THz --- Time domain spectroscopy," Journal of Infrared, Millimeter, and Terahertz Waves, Vol. 43, No. 7-8, 582-597, 2022.
doi:10.1007/s10762-022-00874-2 Google Scholar
5. Patel, S. K., J. Surve, and J. Parmar, "Detection of cancer with graphene metasurface-based highly efficient sensors," Diamond and Related Materials, Vol. 129, 109367, 2022.
doi:10.1016/j.diamond.2022.109367 Google Scholar
6. Strag, M. and W. Swiderski, "Defect detection in aramid fiber-reinforced composites via terahertz radiation," Journal of Nondestructive Evaluation, Vol. 42, No. 1, 2023.
doi:10.1007/s10921-022-00917-7 Google Scholar
7. Ergün, S. and S. Sönmez, "Terahertz technology for military applications," Journal of Management and Information Science, Vol. 3, No. 1, 13-16, 2015. Google Scholar
8. Xu, C., Z. Ren, J. Wei, and C. Lee, "Reconfigurable terahertz metamaterials: From fundamental principles to advanced 6G applications," Iscience, Vol. 25, No. 2, 103799, 2022.
doi:10.1016/j.isci.2022.103799 Google Scholar
9. Sabah, C., B. Mulla, H. Altan, and L. Ozyuzer, "Cross-like terahertz metamaterial absorber for sensing applications," Pramana, Vol. 91, 1-7, 2018.
doi:10.1007/s12043-018-1591-4 Google Scholar
10. Zhou, S., K. Bi, Q. Li, L. Mei, Y. Niu, W. Fu, S. Han, et al. "Patterned graphene-based metamaterials for terahertz wave absorption," Coatings, Vol. 13, No. 1, 59, 2023.
doi:10.3390/coatings13010059 Google Scholar
11. Li, J., Y. Liu, Y. Chen, W. Chen, H. Guo, Q. Wu, and M. Li, "Tunable broadband-narrowband and dual-broadband terahertz absorber based on a hybrid metamaterial vanadium dioxide and graphene," Micromachines, Vol. 14, No. 1, 201, 2023.
doi:10.3390/mi14010201 Google Scholar
12. Zhang, Z., Q. Sun, Y. Fan, Z. Zhu, J. Zhang, X. Yuan, and C. Guo, "Low-threshold and high-extinction-ratio optical bistability within a graphene-based perfect absorber," Nanomaterials, Vol. 13, No. 3, 389, 2023.
doi:10.3390/nano13030389 Google Scholar
13. Upender, P. and A. Kumar, "THz dielectric metamaterial sensor with high Q for biosensing applications," IEEE Sensors Journal, 2023. Google Scholar
14. Beheshti Asl, A., D. Pourkhalil, A. Rostami, and H. Mirtaghioglu, "A perfect electrically tunable graphene-based metamaterial absorber," Journal of Computational Electronics, Vol. 20, 864-872, 2021.
doi:10.1007/s10825-021-01664-0 Google Scholar
15. Yi, Z., J. Chen, C. Cen, X. Chen, Z. Zhou, Y. Tang, X. Ye, S. Xiao, W. Luo, and P. Wu, "Tunable graphene-based plasmonic perfect metamaterial absorber in the THz region," Micromachines, Vol. 10, No. 3, 194, 2019.
doi:10.3390/mi10030194 Google Scholar
16. Ashvanth, B., B. Partibane, and G. Idayachandran, "Designing miniaturized metamaterial absorber with tunable multiband characteristics for THz applications," Bulletin of Materials Science, Vol. 44, 1-8, 2021. Google Scholar
17. Xu, K.-D., Y. Cai, X. Cao, Y. Guo, Y. Zhang, and Q. Chen, "Multiband terahertz absorbers using T-shaped slot-patterned graphene and its complementary structure," JOSA B, Vol. 37, No. 10, 3034-3040, 2020.
doi:10.1364/JOSAB.404062 Google Scholar
18. Jain, P., K. Prakash, G. M. Khanal, N. Sardana, S. Kumar, N. Gupta, and A. K. Singh, "Quad-band polarization sensitive terahertz metamaterial absorber using Gemini-shaped structure," Results in Optics, Vol. 8, 100254, 2022.
doi:10.1016/j.rio.2022.100254 Google Scholar
19. Wang, J., T. Lang, Z. Hong, M. Xiao, and J. Yu, "Design and fabrication of a triple-band terahertz metamaterial absorber," Nanomaterials, Vol. 11, No. 5, 1110, 2021.
doi:10.3390/nano11051110 Google Scholar
20. Abdulkarim, Y. I., M. Xiao, H. N. Awl, F. F. Muhammadsharif, T. Lang, S. R. Saeed, F. Alkurt, M. Bakir, M. Karaaslan, and J. Dong, "Simulation and lithographic fabrication of a triple band terahertz metamaterial absorber coated on flexible polyethylene terephthalate substrate," Optical Materials Express, Vol. 12, No. 1, 338-359, 2022.
doi:10.1364/OME.447855 Google Scholar
21. Li, H. and J. Yu, "Active dual-tunable broadband absorber based on a hybrid graphene-vanadium dioxide metamaterial," OSA Continuum, Vol. 3, No. 7, 2143-2155, Aug. 15, 2020. Google Scholar
22. Nickpay, M. R., M. Danaie, and A. Shahzadi, "A wideband and polarization-insensitive graphene-based metamaterial absorber," Superlattices and Microstructures, Vol. 150, 106786, Feb. 1, 2021. Google Scholar
23. Zhuang, S., X. Li, T. Yang, L. Sun, O. Kosareva, C. Gong, and W. Liu, "Graphene-based absorption --- Transmission multi-functional tunable THz metamaterials," Micromachines, Vol. 13, No. 7, 1239, Aug. 1, 2022. Google Scholar