Vol. 133
Latest Volume
All Volumes
2023-06-19
Compact Ultrawideband Antenna Backed by an Artificial Magnetic Conductor
By
Progress In Electromagnetics Research C, Vol. 133, 251-260, 2023
Abstract
In this paper, a new artificial magnetic conductor (AMC) structure is proposed to enhance the performance of an ultra-wideband (UWB) antenna for wireless communication networks. A fractal configuration is used to introduce the UWB performance of the proposed antenna. The antenna is composed of a modified rectangular patch antenna with a tapered section fed by a coplanar waveguide (CPW) with a total size of 24×20×1.5 mm3 . The antenna is backed by an AMC. The proposed AMC unit consists of a square patch surrounded by four slotted square rings. This unit cell exhibits an in-phase reflection from 6.3 GHz to 10 GHz. The obtained bandwidth of the antenna with AMC is 110% from 3.2 GHz to 11 GHz which covers the entire UWB range. The peak gain of 7.2 dB is accomplished with a compact size of 40×40×6.5 mm3 , 0.95×0.95×0.15λo at 7.1 GHz. The proposed UWB antenna-AMC is fabricated and measured for verification.
Citation
Khalid Moustafa Ibrahim, Eman M. Eldesouki, and Ahmed Attiya, "Compact Ultrawideband Antenna Backed by an Artificial Magnetic Conductor," Progress In Electromagnetics Research C, Vol. 133, 251-260, 2023.
doi:10.2528/PIERC23042902
References

1. Saeidi, T., I. Ismail, W. P. Wen, A. R. Alhawari, and A. Mohammadi, "Ultra-wideband antennas for wireless communication applications," International Journal of Antennas and Propagation, Vol. 2019, Article ID 7918765, 2019.
doi:10.1155/2019/7918765

2. Tahar, Z., X. Derobert, and M. Benslama, "An ultra-wideband modified Vivaldi antenna applied to through the ground and wall imaging," Progress In Electromagnetics Research C, Vol. 86, 111-122, 2018.
doi:10.2528/PIERC18051502

3. Chen, Z. N., Y. Juan, X. Qing, and W. Che, "Enhanced radiation from a horizontal dipole closely placed above a PEC ground plane using a parasitic strip," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 11, 4868-4871, 2016.
doi:10.1109/TAP.2016.2594842

4. Kurra, L., M. P. Abegaonkar, A. Basu, and S. K. Koul, "FSS properties of a uniplanar EBG and its application in directivity enhancement of a microstrip antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1606-1609, 2016.
doi:10.1109/LAWP.2016.2518299

5. Qin, P. Y., L. Y. Ji, S. L. Chen, and Y. J. Guo, "Dual-polarized wideband Fabry-Perot antenna with quad-layer partially reflective surface," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 4, 551-554, 2018.
doi:10.1109/LAWP.2018.2802439

6. Kundu, S., A. Chatterjee, S. K. Jana, and S. K. Parui, "A compact umbrella-shaped UWB antenna with gain augmentation using frequency selective surface," Radioengineering, Vol. 27, No. 2, 448-454, 2018.
doi:10.13164/re.2018.0448

7. Kumar, R. and D. C. Dhubkarya, "UWB compact microstrip patch antenna with high directivity using novel star-shaped frequency selective surface," Progress In Electromagnetics Research C, Vol. 119, 255-273, 2022.
doi:10.2528/PIERC22030307

8. Paik, H., S. K. Mishra, C. M. S. Kumar, and K. Premchand, "High performance CPW fed printed antenna with double layered frequency selective surface reflector for bandwidth and gain improvement," Progress In Electromagnetics Research Letters, Vol. 102, 47-55, 2022.
doi:10.2528/PIERL21101703

9. Zheng, Q.-R., B.-C. Lin, and B.-H. Zhou, "Design of high gain lens antenna by using 100% transmitting metamaterials," Progress In Electromagnetics Research C, Vol. 86, 167-176, 2018.
doi:10.2528/PIERC18060203

10. Manikandan, R., P. H. Rao, and P. K. Jawahar, "Gain enhancement of horn antenna using metasurface lens," Advanced Electromagnetics, Vol. 7, No. 4, 27-33, 2018.
doi:10.7716/aem.v7i4.614

11. Pandit, V. K. and A. R. Harish, "Compact wide band directional antenna using cross-slot artificial magnetic conductor (CSAMC)," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 29, No. 4, 21577, 2019.
doi:10.1002/mmce.21577

12. Joshi, A. and R. Singhal, "Gain enhancement in probe-fed hexagonal ultra-wideband antenna using AMC reflector," Journal of Electromagnetic Waves and Applications, Vol. 33, No. 9, 1185-1196, 2019.
doi:10.1080/09205071.2019.1605939

13. Mersani, A., L. Osman, and J.-M. Ribero, "Flexible UWB AMC antenna for early stage skin cancer identification," Progress In Electromagnetics Research M, Vol. 80, 71-81, 2019.
doi:10.2528/PIERM18121404

14. Jiang, Z., Z. Wang, L. Nie, X. Zhao, and S. Huang, "A low-profile ultrawideband slotted dipole antenna based on artificial magnetic conductor," IEEE Antennas and Wireless Propagation Letters, Vol. 21, No. 4, 671-675, 2022.
doi:10.1109/LAWP.2022.3140802

15. Gao, G. P., C. Yang, B. Hu, R.-F. Zhang, and S.-F. Wang, "A wearable PIFA with an all-textile metasurface for 5 GHz WBAN applications," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 2, 288-292, Feb. 2019.
doi:10.1109/LAWP.2018.2889117

16. Zhu, J., S. Li, S. Liao, and Q. Xue, "Wideband low-profile highly isolated MIMO antenna with artificial magnetic conductor," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 3, 458-462, Mar. 2018.
doi:10.1109/LAWP.2018.2795018

17. Abdulhasan, R. A., R. Alias, K. N. Ramli, F. C. Seman, and R. A. Abd-Alhameed, "High gain CPW-fed UWB planar monopole antenna-based compact uniplanar frequency selective surface for microwave imaging," Int. J. RF Microw. Comput.-Aided Eng., Vol. 29, No. 8, Art. No. e21757, 2019.
doi:10.1002/mmce.21757

18. Kumari, P., R. K. Gangwar, and R. K. Chaudhary, "An aperture-coupled stepped dielectric resonator UWB MIMO antenna with AMC," IEEE Antennas and Wireless Propagation Letters, Vol. 21, No. 10, 2040-2044, Oct. 2022.
doi:10.1109/LAWP.2022.3189694

19. Zhang, Y., Y. Li, W. Zhang, Z. Zhang, and Z. Feng, "Omnidirectional antenna diversity system for high-speed onboard communications," Engineering, Vol. 11, No. 4, 72-79, 2022.
doi:10.1016/j.eng.2020.10.014

20. Al-Gburi, A. J. A., I. B. M. Ibrahim, M. Y. Zeain, and Z. Zakaria, "Compact size and high gain of CPW-fed UWB strawberry artistic shaped printed monopole antennas using FSS single layer reflector," IEEE Access, Vol. 8, 92697-92707, 2020.

21. Joubert, J., J. C. Vardaxoglou, W. G. Whittow, and J. W. Odendaal, "CPW-fed cavity-backed slot radiator loaded with an AMC reflector," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 2, 735-742, 2011.
doi:10.1109/TAP.2011.2173152

22. Cao, Y. F., X. Y. Zhang, and T. Mo, "Low-profile conical-pattern slot antenna with wideband performance using artificial magnetic conductors," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 5, 2210-2218, 2018.
doi:10.1109/TAP.2018.2809619

23. Wu, J., B. Wang, W. S. Yerazunis, and K. H. Teo, "Wireless power transfer with artificial magnetic conductors," 2013 IEEE Wireless Power Transfer (WPT), 155-158, IEEE, 2013.
doi:10.1109/WPT.2013.6556906

24. Pandey, G. K., H. S. Singh, and M. K. Meshram, "Platform tolerant UWB antenna over multi-band AMC structure," Microwave and Optical Technology Letters, Vol. 58, No. 5, 1052-1059, 2016.
doi:10.1002/mop.29734

25. Sayidmarie, K. H. and L. S. Yahya, "Modeling of dual-band crescent-shape monopole antenna for WLAN applications," International Journal of Electromagnetics and Applications, Vol. 4, No. 2, 31-39, 2014.