1. Cameron, R. J., C. M. Kudsia, and R. R. Mansour, Microwave Filters for Communication Systems, 2nd Ed., Wiley, 2018.
doi:10.1002/9781119292371
2. Maxwell, J. C., A Treatise on Electricity and Magnetism, 3rd Ed., Vol. 2, 68-73, Clarendon, 1892.
3. Woode, A. and J. Petit, "Diagnostic investigations into the multipactor effect, susceptibility zone measurements and parameters affecting a discharge," ESTEC Working Paper 1556, Eur. Spacy Agency, Noordwijk, The Netherlands, Nov. 1989. Google Scholar
4. Anderson, D., U. Jordon, M. Lisak, T. Olsson, and M. Ahlander, "Microwave breakdown in resonators and filters," IEEE Trans. Microw. Theory Techn., Vol. 47, No. 12, 2547-2556, Dec. 1999.
doi:10.1109/22.809005 Google Scholar
5. MacDonald, A. D., Microwave Breakdown in Gases, Wiley, 1966.
6. Raizer, Y. P., Gas Discharge Physics, Springer, 1991.
doi:10.1007/978-3-642-61247-3
7. Woo, R., "Final report on RF voltage breakdown in coaxial transmission lines," Tech. Rep. 32-1500, Jet Propulsion Lab, CA, U.S.A., Oct. 1970. Google Scholar
8. Puech, J., M. Merecki, D. Anderson, M. Buyanova, D. Doroshkina, U. Jordan, L. Lapierre, M. Lisak, V. E. Semenov, J. Sombrin, and R. Udilijak, "Microwave discharge research activities within the contest of the Chalmers University (Sweden)/Institute of Applied Physics (Russia)/CNES (France) project," Proc. 4th Int. Workshop on Multipactor, Corona and Passive Intermodulation in Space RF Hardware (MULCOPIM), Sep. 2003. Google Scholar
9. Levy, R. and S. B. Cohn, "A history of microwave filter research, design, and development," IEEE Trans. Microw. Theory Tech., Vol. 32, No. 9, 1055-1067, Sept. 1984.
doi:10.1109/TMTT.1984.1132817 Google Scholar
10. Levy, R., R. V. Snyder, and G. Matthaei, "Design of microwave filters," IEEE Trans. Microw. Theory Tech., Vol. 50, No. 3, 783-793, Mar. 2002.
doi:10.1109/22.989962 Google Scholar
11. Hunter, I. C., L. Billonet, B. Jarry, and P. Guillon, "Microwave filters --- Applications and technology," IEEE Trans. Microw. Theory Tech., Vol. 50, No. 3, 794-805, Mar. 2002.
doi:10.1109/22.989963 Google Scholar
12. Matthaei, G., L. Young, and E. M. T. Jones, Microwave Filters, Impedance-matching Networks, and Coupling Structures, Artech House, Inc., 1980.
13. Arnedo, I., I. Arregui, M. Chudzik, F. Teberio, A. Lujambio, D. Benito, T. Lopetegi, and M. A. G. Laso, "Direct and exact synthesis: Controlling the microwaves by means of synthesized passive components with smooth profiles," IEEE Microwave Magazine, Vol. 16, No. 4, 114-128, May 2015.
doi:10.1109/MMM.2015.2394011 Google Scholar
14. Arnedo, I., M. Chudzik, J. M. Percaz, I. Arregui, F. Teberio, D. Benito, T. Lopetegi, and M. A. G. Laso, "Synthesis of one dimensional electromagnetic bandgap structures with fully controlled parameters," IEEE Trans. Microw. Theory Techn., Vol. 65, No. 9, 3123-3134, Sept. 2017.
doi:10.1109/TMTT.2017.2722401 Google Scholar
15. Woo, W. and J. DeGroot, "Microwave absorption and plasma heating due to microwave breakdown in the atmosphere," IEEE Phys. Fluids, Vol. 27, No. 2, 475-487, 1984.
doi:10.1063/1.864645 Google Scholar
16. Baher, H., Synthesis of Electrical Networks, John Wiley & Sons, 1984.
17. Ozaki, H. and J. Ishii, "Synthesis of a class of strip-line filters," IRE Trans. Circuit Theory, Vol. 5, No. 2, 104-109, Jun. 1958.
doi:10.1109/TCT.1958.1086441 Google Scholar
18. Wenzel, R. J., "Exact design of TEM microwave networks using quarter-wave lines," IEEE Trans. Microw. Theory Tech., Vol. 12, No. 1, 94-111, Jan. 1964.
doi:10.1109/TMTT.1964.1125757 Google Scholar
19. Minnis, B. J., Designing Microwave Circuits by Exact Synthesis, Artech House, 1996.
20. Carlin, H. J. and P. P. Civalleri, Wideband Circuit Design, CRC Press, 1998.
21. Richards, P. I., "Resistor-transmission-line circuits," Proc. IRE, Vol. 36, No. 2, 217-220, Feb. 1948.
doi:10.1109/JRPROC.1948.233274 Google Scholar
22. Morales-Hernandez, A. M., M. A. Sanchez-Soriano, S. Marini, et al. "Increasing peak power handling in microstrip bandpass filter by using rounded-end resonantors," IEEE Microw. Wireless Compon. Lett., Vol. 31, No. 3, 237-240, Mar. 2021.
doi:10.1109/LMWC.2021.3050765 Google Scholar
23. Feced, R., M. N. Zerbas, and M. A. Muriel, "An efficient inverse scattering algorithm for the design of nonuniform fiber bragg gratings," IEEE J. Quantum Electron., Vol. 35, No. 8, 1105-1115, Aug. 1999.
doi:10.1109/3.777209 Google Scholar
24. Skaar, J., Synthesis and characterization of fiber Bragg gratings, Ph.D. Dissertation, The Norwegian University of Science and Technology, Norway, 2000.
25. Skaar, J., L. Wang, and T. Erdogan, "On the synthesis of fiber bragg gratings by layer peeling," IEEE J. Quantum Electron., Vol. 37, No. 2, 165-173, Feb. 2001.
doi:10.1109/3.903065 Google Scholar
26. Poladian, L., "Simple grating synthesis algorithm," Opt. Lett., Vol. 25, No. 11, 787-789, Jun. 2000.
doi:10.1364/OL.25.000787 Google Scholar
27. Poladian, L., "Simple grating synthesis algorithm: Errata," Opt. Lett., Vol. 25, No. 18, 1400-1400, Sept. 2000.
doi:10.1364/OL.25.001400 Google Scholar
28. Sanchez-Soriano, M. A., Y. Quere, V. Le Saux, et al. "Peak and average power handling capability of microstrip filters," IEEE Trans. Microw. Theory Techn., Vol. 67, No. 8, 3436-3448, Aug. 2019.
doi:10.1109/TMTT.2019.2919509 Google Scholar
29. Morales-Hernandez, A., M. A. Sanchez-Soriano, S. Marini, et al. "Enhancement of corona discharge thresholds in microstrip bandpass filters by using cover-ended resonators," International Journal of Microwave and Wireless Technologies, Vol. 13, 708-718, Apr. 2021.
doi:10.1017/S1759078721000532 Google Scholar