1. Cameron, R. J., C. M. Kudsia, and R. R. Mansour, "Tunable filters," Microw. Filters Commun. Syst., 731-783, 2018, doi: 10.1002/9781119292371.ch22.
doi:10.1002/9781119292371.ch22 Google Scholar
2. Cameron, R. J., C. M. Kudsia, and R. R. Mansour, "Synthesis of networks: Direct coupling matrix synthesis methods," Microw. Filters Commun. Syst., 247-294, 2018, doi: 10.1002/9781119292371.ch8.
doi:10.1002/9781119292371.ch8 Google Scholar
3. Cameron, R. J., "Advanced coupling matrix synthesis techniques for microwave filters," IEEE Trans. Microw. Theory Tech., Vol. 51, No. 1 I, 1-10, 2003, doi: 10.1109/TMTT.2002.806937.
doi:10.1109/TMTT.2002.806937 Google Scholar
4. Hunter, I. C., L. Billonet, B. Jarry, and P. Guillon, "Microwave filters --- Applications and technology," IEEE Trans. Microw. Theory Tech., Vol. 50, No. 3, 794-805, 2002, doi: 10.1109/22.989963.
doi:10.1109/22.989963 Google Scholar
5. Zhang, Y. and K. L. Wu, "General method for synthesizing dispersive coupling matrix of microwave bandpass filters," Int. J. Microw. Wirel. Technol., Vol. 14, No. 3, 379-386, 2022, doi: 10.1017/S1759078721000672.
doi:10.1017/S1759078721000672 Google Scholar
6. Pommier, V., D. Cros, P. Guillon, A. Carlier, and E. Rogeaux, "Transversal filter using whispering gallery quarter cut resonators," IEEE MTT-S Int. Microw. Symp. Dig., Vol. 3, 1779-1782, 2000, doi: 10.1109/MWSYM.2000.862324. Google Scholar
7. Cameron, R. J., C. M. Kudsia, and R. R. Mansour, "Characterization of lossless lowpass prototype filter functions," Microw. Filters Commun. Syst., 87-127, 2018, doi: 10.1002/9781119292371.ch3.
doi:10.1002/9781119292371.ch3 Google Scholar
8. Lalbakhsh, A., et al. "A design of a dual-band bandpass filter based on modal analysis for modern communication systems," Electron., Vol. 9, No. 11, 1-13, 2020, doi: 10.3390/electronics9111770.
doi:10.3390/electronics9111770 Google Scholar
9. Ahn, K. P., A. Saitou, and K. Honjo, "Group delay analysis of differential-mode coupled four lines bandpass filters," Asia-Pacific Microw. Conf. Proceedings, APMC, Vol. 2, 1260-1263, 2006, doi: 10.1109/APMC.2006.4429635. Google Scholar
10. Perenić, G., N. Stamenković, N. Stojanović, and N. Denić, "Chained-function filter synthesis based on the modified jacobi polynomials," Radioengineering, Vol. 27, No. 4, 1112-1118, 2018, doi: 10.13164/re.2018.1112.
doi:10.13164/re.2018.1112 Google Scholar
11. Wu, Y. and Q. Zeng, "A novel dual-band waveguide filter with multiple transmission zeros based on TE102- and TE103-modes," IEEE Microw. Wirel. Components Lett., Vol. 32, No. 10, 1159-1162, 2022, doi: 10.1109/LMWC.2022.3175993.
doi:10.1109/LMWC.2022.3175993 Google Scholar
12. Luhaib, S. W. O., M. S. Bakr, I. C. Hunter, and N. Somjit, "Compact triple-mode microwave dielectric resonator filters," Int. J. Electron. Lett., 194-204, 2019, doi: 10.1080/00207217.2019.1582714. Google Scholar
13. Lim, Y. P., S. Cheab, S. Soeung, and P. W. Wong, "An the design and fabrication of chained-function waveguide filters with reduced fabrication sensitivity using CNC and DMLS," Progress In Electromagnetics Research B, Vol. 87, 39-60, 2020, doi: 10.2528/PIERB20011101.
doi:10.2528/PIERB20011101 Google Scholar
14. Basheer, A., H. Abdulhussein, and J. K. Ali, "Design of bandpass filter for 5g applications with high-selectivity and wide band rejection," 2022 Muthanna International Conference on Engineering Science and Technology (MICEST), 179-183, 2022.
doi:10.1109/MICEST54286.2022.9790185 Google Scholar
15. Liu, J., Y. X. Wang, G. Y. Wei, R. L. Jia, and Y. L. Duan, "Design of high-selective wideband bandpass filter with a notched-band and harmonic suppression," Prog. Electromagn. Res. Lett., Vol. 105, 57-62, 2022, doi: 10.2528/PIERL22051001.
doi:10.2528/PIERL22051001 Google Scholar
16. Zhang, Y., X. Shang, F. Zhang, and J. Xu, "A 3-D printed Ku-band waveguide filter based on novel rotary coupling structure," IEEE Microw. Wirel. Components Lett., Vol. 33, No. 1, 35-38, 2022, doi: 10.1109/LMWC.2022.3194367.
doi:10.1109/LMWC.2022.3194367 Google Scholar
17. Lim, Y. P., Y. L. Toh, S. Cheab, G. S. Ng, and P. W. Wong, "Chained-function waveguide filter for 5G and beyond," IEEE Reg. 10 Annu. Int. Conf. Proceedings/TENCON, 107-110, 2019, doi: 10.1109/TENCON.2018.8650548. Google Scholar
18. Wong, P. W., "A sustainable and fast approach to filter design for 5G implementation," RFM 2018 --- 2018 IEEE Int. RF Microw. Conf. Proc., Vol. 88, No. 3, 349-351, 2018, doi: 10.1109/RFM.2018.8846520. Google Scholar
19. Chappa, R., L. Janjanam, and S. K. Saha, "Performance analysis of optimal FIR LPF and HPF using AVOA," 2022 6th International Conference On Computing, Communication, Control And Automation (ICCUBEA), 1-6, 2023, doi: 10.1109/iccubea54992.2022.10011081. Google Scholar
20. Lim, Y., S. Cheab, S. Soeung, and P. Wong, "On the design and fabrication of chained-function waveguide filters with reduced fabrication sensitivity using CNC and DMLS," Progress In Electromagnetics Research B, Vol. 87, 39-60, 2020.
doi:10.2528/PIERB20011101 Google Scholar
21. Fernandez-Prieto, A., A. Lujambio, J. Martel, F. Medina, F. Martin, and R. R. Boix, "Balanced-to-balanced microstrip diplexer based on magnetically coupled resonators," IEEE Access, Vol. 6, 18536-18547, 2018, doi: 10.1109/ACCESS.2018.2820073.
doi:10.1109/ACCESS.2018.2820073 Google Scholar
22. Cheab, S., P. W. Wong, and X. Y. Chew, "Parallel connected dual-mode filter," IEEE Microw. Wirel. Components Lett., Vol. 25, No. 9, 582-584, 2015, doi: 10.1109/LMWC.2015.2451393.
doi:10.1109/LMWC.2015.2451393 Google Scholar
23. Al-Yasir, Y. I. A., N. O. Parchin, R. A. Abd-Alhameed, A. M. Abdulkhaleq, and J. M. Noras, "Recent progress in the design of 4G/5G reconfigurable filters," Electron., Vol. 8, No. 1, 2019, doi: 10.3390/electronics8010114.
doi:10.3390/electronics8010114 Google Scholar
24. Mishra, V. and A. K. Sign, "Design and analysis of coupling matrix for microwave filter applications," Int. J. Electr. Electron. Commun. Eng., Vol. 2, No. 7, 508-520, 2012. Google Scholar
25. Bong, D. C. H., et al. "Analysis and design of a novel microstrip filter for C-band applications," IEEE Access, Vol. 7, No. 5, 130922-130936, 2019, doi: 10.1109/ICSSS.2019.8882868.
doi:10.1109/ACCESS.2019.2940059 Google Scholar
26. Tang, C. W. and J. M. Jiang, "Design of the microstrip bandpass filter with 4 band-switching modes," IEEE Trans. Circuits Syst. II Express Briefs, Vol. 3, 1-5, 2022, doi: 10.1109/TCSII.2022.3229105. Google Scholar
27. Cheab, S., P. W. Wong, and S. Soeung, "Design of multi-band filters using parallel connected topology," Radioengineering, No. 27, 186-192, 2018, doi: 10.13164/re.2018.0186.
doi:10.13164/re.2018.0186 Google Scholar
28. Lesnikov, V., T. Naumovich, and A. Chastikov, "Sensitivity analysis of digital filters using the continued fraction expansion," 2018 Moscow Workshop on Electronic and Networking Technologies (MWENT), 1-5, 2018, doi: 10.1109/MWENT.2018.8337178. Google Scholar
29. Zhao, K. and D. Psychogiou, "Single-to-multi-band reconfigurable acoustic-wave-lumped-resonator bandpass filters," IEEE Trans. Circuits Syst. II Express Briefs, Vol. 69, No. 4, 2066-2070, 2022, doi: 10.1109/TCSII.2021.3139008. Google Scholar