Vol. 111
Latest Volume
All Volumes
PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2023-06-19
Novel Passive Intermodulation Measurement Platform for Planar Microwave Circuit
By
Progress In Electromagnetics Research Letters, Vol. 111, 27-34, 2023
Abstract
This paper presents a novel test platform for passive intermodulation measurement on planar microwave circuits using a filter design strategy. A finger planar band-pass filter is proposed and optimized to have an evenly distributed stimulation field on the surface. The layout is optimized with symmetrical coupling lines from two directions, and the feed line is with a tapered transformer. A pair of T-type resonators is adopted to improve the flatness of the field distribution. In the application of this test platform, print circuit boards with different layouts are tested, and the passive intermodulation difference of different layouts can be differentiated. As this platform is with open space, the device under test can be easily changed without suspending the passive intermodulation test system, which can be applied in the production line to speed up the production quality inspection.
Citation
Junqiang Yang, Xiong Chen, and Qianwen Chen, "Novel Passive Intermodulation Measurement Platform for Planar Microwave Circuit," Progress In Electromagnetics Research Letters, Vol. 111, 27-34, 2023.
doi:10.2528/PIERL23021902
References

1. Hienonen, S., V. Golikov, P. Vainikainen, and A. V. Raisanen, "Near-field scanner for the detection of passive intermodulation sources in base station antennas," IEEE Transactions on Electromagnetic Compatibility, Vol. 46, No. 4, 661-667, Nov. 2004.
doi:10.1109/TEMC.2004.837958

2. Shitvov, A. P., D. E. Zelenchuk, A. G. Schuchinsky, and V. F. Fusco, "Passive intermodulation generation on printed lines: Near-field probing and observations," IEEE Transactions on Microwave Theory and Techniques, Vol. 56, No. 12, 3121-3128, Dec. 2008.
doi:10.1109/TMTT.2008.2007136

3. Chen, X., Y. He, S. Yang, et al. "Analytic passive intermodulation behavior on the coaxial connector using monte carlo approximation," IEEE Transactions on Electromagnetic Compatibility, Vol. 60, No. 5, 1207-1214, Oct. 208.
doi:10.1109/TEMC.2018.2809449

4. Hienonen, S., V. Golikov, V. S. Mottonen, P. Vainikainen, and A. V. Raisanen, "Near-field amplitude measurement of passive intermodulation in antennas," 2001 31st European Microwave Conference, 1-4, London, UK, 2001.

5. Zhang, W. and F. Nian, "The construction and analysis of PIM testing system," 2012 International Conference on Microwave and Millimeter Wave Technology (ICMMT), 1-4, Shenzhen, 2012.

6. Yong, S., S. Yang, L. Zhang, X. Chen, D. J. Pommerenke, and V. Khilkevich, "Passive intermodulation source localization based on emission source microscopy," IEEE Transactions on Electromagnetic Compatibility, Vol. 62, No. 1, 266-271, Feb. 2020.
doi:10.1109/TEMC.2019.2938634

7. Shitvov, A. P., D. D. Zelenchuk, A. G. Schuchinsky, V. F. Fusco, and N. Buchanan, "Mapping of passive intermodulation products on microstrip lines," 2008 IEEE MTT-S International Microwave Symposium Digest, 1573-1576, Atlanta, GA, USA, 2008.

8. Song, K. and Q. Xue, "Novel broadband bandpass filters using Y-shaped dual-mode microstrip resonators," IEEE Microwave and Wireless Components Letters, Vol. 19, No. 9, 548-550, Sept. 2009.
doi:10.1109/LMWC.2009.2027058

9. Tantiviwat, S., M. S. Razalli, and S. Z. Ibrahim, "Miniature microstrip bandpass filters based on quadruple-mode resonators with less via," 2017 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM), 1-4, Nagoya, 2017.

10. Sun, S. and L. Zhu, "Capacitive-ended interdigital coupled lines for UWB bandpass filters with improved out-of-band performances," IEEE Microwave and Wireless Components Letters, Vol. 16, No. 8, 440-442, Aug. 2006.
doi:10.1109/LMWC.2006.879492