Vol. 42
Latest Volume
All Volumes
PIERB 117 [2026] PIERB 116 [2026] PIERB 115 [2025] PIERB 114 [2025] PIERB 113 [2025] PIERB 112 [2025] PIERB 111 [2025] PIERB 110 [2025] PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2012-07-24
Experimental Performance Comparison of Six-Port and Conventional Zero-IF/Low-IF Receivers for Software Defined Radio
By
Progress In Electromagnetics Research B, Vol. 42, 311-333, 2012
Abstract
This paper presents an experimental performance comparison among three RF architectures that are very suitable for Software Defined Radio (SDR) implementation: zero-IF, low-IF, and six-port network. A six-port receiver and a dual zero-IF/low-IF receiver have been developed for this purpose. Six-port receiver is a very promising and flexible RF architecture for the low-cost implementation of integrated microwave and millimeter-wave systems. Competitive advantages such as ultra-broadband behavior, low-cost, reconfigurability, and low power consumption, point to the six-port architecture as a good candidate to implement a SDR. However, two issues on broadband six-port receivers require intensive research: dynamic range extension, and miniaturization. In this paper, two solutions are proposed to solve these problems: the use of biased detector diodes for dynamic range extension, and the use of low temperature co-fired ceramic (LTCC) technology for six-port reduction. The measurement results indicate that the six-port receiver shows high potential benefits and advantages compared to conventional zero-IF and low-IF receivers. In addition, the capability of the six-port architecture to operate as both zero-IF and low-IF receivers has been experimentally demonstrated for the first time.
Citation
Cristina de la Morena-Álvarez-Palencia, and Mateo Burgos-Garcia, "Experimental Performance Comparison of Six-Port and Conventional Zero-IF/Low-IF Receivers for Software Defined Radio," Progress In Electromagnetics Research B, Vol. 42, 311-333, 2012.
doi:10.2528/PIERB12061210
References

1. Bagheri, R., A. Mirzaei, M. E. Heidari, S. Chehrazi, M. Lee, M. Mikhemar, W. K. Tang, and A. A. Abidi, "Software-defined radio receiver: Dream to reality," IEEE Communications Mag., Vol. 44, No. 8, 111-118, Aug. 2006.
doi:10.1109/MCOM.2006.1678118        Google Scholar

2. Abidi, A. A., "The path to the software-defined radio receiver," IEEE J. Solid-State Circuits, Vol. 42, No. 5, 954-966, May 2007.
doi:10.1109/JSSC.2007.894307        Google Scholar

3. Luy, J.-F., "Software configurable receivers," European Microwave Conf., 1-8, Sep. 2002.        Google Scholar

4. Wu, K., "Multiport interferometer techniques for innovative transceiver applications," IEEE Radio and Wireless Symp., 531-534, New Orleans, LA, Jan. 2010.        Google Scholar

5. Puvaneswari, O. S., "Wideband analog front-end for multistandard software defined radio receiver," IEEE Int. Symp. Personal, Indoor and Mobile Radio Communications, Vol. 3, 1937-1941, Sep. 2004.        Google Scholar

6. Khaddaj Mallat, N., E. Moldovan, and S. O. Tatu, "Comparative demodulation results for six-port and conventional 60 GHz direct conversion receivers ," Progress In Electromagnetics Research, Vol. 84, 437-449, 2008.
doi:10.2528/PIER08081003        Google Scholar

7. Razavi, B., "Design considerations for direct-conversion receivers," IEEE Trans. Circuits Syst., Vol. 44, No. 6, 428-435, Jun. 1997.
doi:10.1109/82.592569        Google Scholar

8. Crols, J. and M. S. J. Steyaert, "Low-IF topologies for high-performance analog front ends of fully integrated receivers," IEEE Trans. Circuits Syst. II, Analog. Digit. Signal Process., Vol. 45, No. 3, 269-282, Mar. 1998.
doi:10.1109/82.664233        Google Scholar

9. Hartley, R., "Single-sideband modulator,", U.S. Patent 1 666 206, Apr. 1928.        Google Scholar

10. Weaver, D. K., "A third method of generation and detection of singlesideband signals," Proc. IRE, Vol. 44, 1703-1705, 1956.
doi:10.1109/JRPROC.1956.275061        Google Scholar

11. Hentschel, T., "The six-port as a communications receiver," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 3, 1039-1047, Mar. 2005.
doi:10.1109/TMTT.2005.843507        Google Scholar

12. Neveux, G., B. Huyart, and G. J. Rodriguez-Guisantes, "Wide-band RF receiver using the `five-port' technology," IEEE Trans. Vehicular Technology, Vol. 53, No. 5, 1441-1451, Sep. 2004.
doi:10.1109/TVT.2004.832392        Google Scholar

13. De la Morena-Álvarez-Palencia, C., K. Mabrouk, B. Huyart, A. Mbaye, and M. Burgos-García, "Direct baseband I-Q regeneration method for five-port receivers improving DC-offset and second-order intermodulation distortion rejection," IEEE Trans. Microw. Theory Tech., Vol. 60, No. 8, 2012.
doi:10.1109/TMTT.2012.2199512        Google Scholar

14. De la Morena-Álvarez-Palencia, C. and M. Burgos-García, "Four-octave six-port receiver and its calibration for broadband communications and software defined radios," Progress In Electromagnetics Research, Vol. 116, 1-21, 2011.        Google Scholar

15. De la Morena-Álvarez-Palencia, C., M. Burgos-García, and D. Rodríguez-Aparicio, "Three octave six-port network for a broadband software radio receiver," European Microwave Conf., Vol. 1110, No. 1113, Paris, France, 2010.        Google Scholar

16. Bahl, I. and P. Bhartia, Microwave Solid State Circuit Design, Chapter 11.2, John Wiley & Sons, Inc., 1988.

17. Hewlett-Packard Application Note 956-5, , "Dynamic range extension of schottky detectors,", 1975.        Google Scholar

18. De la Morena-Álvarez-Palencia, C., M. Burgos-García, and . Rodríguez-Aparicio, "Software defined radio technologies for emergency and professional wide band communications," IEEE Int. Carnahan Conf. Security Tech., 357-363, San Jose, CA, Oct. 5-8, 2010.        Google Scholar

19. Xu, Y. and R. G. Bosisio, "On the real time calibration of six-port receivers," Microw. Opt. Technol. Lett., Vol. 20, No. 5, 318-322, 1999.
doi:10.1002/(SICI)1098-2760(19990305)20:5<318::AID-MOP11>3.0.CO;2-1        Google Scholar

20. Perez-Lara, P., J. A. Medina-Rodriguez, I. Molina-Fernandez, J. G. Wanguemert-Perez, and A. Gonzalez-Salguero, "Wideband homodyne six-port receiver with high LO-RF isolation," IET Microw. Antennas Propag., Vol. 3, No. 5, 882-888, 2009.
doi:10.1049/iet-map.2008.0288        Google Scholar

21. Tatu, S. O. and T. A. Denidni, "New millimeter-wave six-port heterodyne receiver architecture," IEEE MTT-S Int. Microwave Symp. Dig., 1999-2002, Jun. 2006.
doi:10.1109/MWSYM.2006.249845        Google Scholar

22. Boukari, B., E. Moldovan, S. Affes, K. Wu, R. G. Bosisio, and S. O. Tatu, "A heterodyne six-port FMCW radar sensor architecture based on beat signal phase slope techniques," Progress In Electromagnetics Research, Vol. 93, 307-322, 2009.
doi:10.2528/PIER09052610        Google Scholar

23. Fusco, V. and C. Wang, "V-band 57-65 GHz receiver," IET Microwaves, Antennas & Propagation, Vol. 4, No. 1, 1-7, Jan. 2010.
doi:10.1049/iet-map.2008.0424        Google Scholar

24. Hammou, D., E. Modovan, and S. O. Tatu, "Modelling and analysis of a modified V-band MHMIC six-port circuits," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 10, 1419-1427, 2010.
doi:10.1163/156939310791958644        Google Scholar

25. Abielmona, S., H. V. Nguyen, C. Caloz, K. Wu, and R. G. Bosisio, "Compact multilayer ultra-wideband six-port device for modulation/demodulation," Electronics Lett., Vol. 43, No. 15, 813-814, Jul. 2007.
doi:10.1049/el:20070678        Google Scholar

26. Winter, S. M., A. Koelpin, and R. Weigel, "Six-port receiver analog front-end: Multilayer design and system simulation," IEEE Trans. Circuits Sist. II, Vol. 55, No. 3, 254-258, Mar. 2008.
doi:10.1109/TCSII.2008.918999        Google Scholar

27. De la Morena-Álvarez-Palencia, C., M. Burgos, and J. Gismero-Menoyo, "Contribution of LTCC technology to the miniaturization of six-port networks," European Microw. Conf., 659-662, Manchester, UK, Oct. 2011.        Google Scholar