Vol. 3
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2008-02-13
Aperture Coupled Microstrip Antenna with Low RCS
By
Progress In Electromagnetics Research Letters, Vol. 3, 61-68, 2008
Abstract
Research of antenna Radar Cross Section (RCS) is very important for low observable platform. Aperture coupled microstrip antenna is fit for the low RCS antenna design because the feed network produce less effect on scattering of microstrip patch. A novel aperture coupled microstrip antenna is proposed, which utilizes the chip-resistor load, ground slot and miniaturization, to realize RCS reduction. Aperture coupled antenna with rectangular patch is chosen as the reference antenna. Two antennas are simulated and measured. The measured results show that the designed antenna realizes only 0.5 dB gain loss while RCS are reduced in almost all the frequency band.
Citation
Jun-Hao Zheng, Ying Liu, and Shu-Xi Gong, "Aperture Coupled Microstrip Antenna with Low RCS," Progress In Electromagnetics Research Letters, Vol. 3, 61-68, 2008.
doi:10.2528/PIERL08013102
References

1. Knott, E. F., et al. Radar Cross Section, Artech House, Inc., Dedham, MA, 1985.

2. Liu, Y., D. Fu, and S. Gong, "A novel model for analyzing the radar cross section of microstrip antenna," Journal of Electromagnetic Waves and Application, Vol. 17, No. 9, 1301-1310, 2003.
doi:10.1163/156939303322520043

3. Cui, G., Y. Liu, and S. Gong, "A novel fractal patch antenna with low RCS," Journal of Electromagnetic Waves and Application, Vol. 21, No. 15, 2403-2411, 2007.
doi:10.1163/156939307783134335

4. Yuan, H.-W., S.-X. Gong, X. Wang, and W.-T. Wang, "Scattering analysis of a printed dipole antenna using PBG structures," Progress In Electromagnetics Research B, Vol. 1, 189-195, 2008.
doi:10.2528/PIERB07102302

5. Wu, T., Y. Li, S. -X. Gong, and Y. Liu, "A novel low RCS microstrip antenna using aperture coupled microstrip dipoles," Journal of Electromagnetic Waves and Application, Vol. 22, 953-963, 2008.
doi:10.1163/156939308784150128

6. Li, Y., Y. Liu, and S. Gong, "Microstrip antenna using ground-cut slots and miniaturization techniques with low RCS," Progress In Electromagnetics Research Letters, Vol. 1, 211-220, 2008.

7. Liu, Y. and S. Gong, "A novel UWB clover-disc monopole antenna with RCS reduction," Journal of Electromagnetic Waves and Application, Vol. 22, 1115-1121, 2008.
doi:10.1163/156939308784158959

8. Pozar, D. M., "Radiation and scattering from a microstrip patch on a uniaxial substrate," IEEE Trans. A ntennas Propag., Vol. AP-35, No. 6, 613-621, 1987.
doi:10.1109/TAP.1987.1144161

9. Song, Y. and A. R. Sebak, "Radiation pattern of aperture coupled prolate hemispheroidal dielectric resonator antenna," Progress In Electromagnetics Research, Vol. 58, 115-133, 2006.
doi:10.2528/PIER05072804

10. Jazi, M. N., Z. H. Firouzeh, H. Mirmohammad-Sadeghi, and G. Askari, "Design and implementation of aperture coupled microstrip IFF antenna," PIERS Online, Vol. 4, No. 1, 1-5, 2008.

11. Hassani, H. R. and M. Jahanbakht, "Method of moment analysis of finite phased array of aperture coupled circular microstrip patch antennas," Progress In Electromagnetics Research B, Vol. 14, 197-210, 2008.
doi:10.2528/PIERB08010602

12. Khodae, G. F., J. Nourinia, and C. Ghobadi, "A practical miniaturized U-slot patch antenna with enhanced bandwidth," Progress In Electromagnetic Research B, Vol. 3, 47-62, 2008.
doi:10.2528/PIERB07112201