Vol. 7
Latest Volume
All Volumes
PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2009-04-15
Measurement of Dielectric Constant of Thin Leaves by Moisture Content at 4mm Band
By
Progress In Electromagnetics Research Letters, Vol. 7, 183-191, 2009
Abstract
A complex dielectric constant for poplar and monstera delicious's obtained by Ulaby at 10 GHz has been revised at 4 mm band. A measurement setup operating at 4 mm was established for making comparison between modeled and measured values. Results basically show that their electromagnetic transparency increases by drying as expected. While moisture content increases from 0% to 60%, transmitted power decreases from 95% down to 22%; reflection goes up to 50% and the absorption reaches from 1% to 20% for monstera leaf. A model developed for poplar responds much better than the model revised for monstera leaves.
Citation
Selcuk Helhel, Bektas Colak, and Sukru Ozen, "Measurement of Dielectric Constant of Thin Leaves by Moisture Content at 4mm Band," Progress In Electromagnetics Research Letters, Vol. 7, 183-191, 2009.
doi:10.2528/PIERL09021605
References

1. Nashashibi, A. and K. Sarabandi, "A bistatic measurement technique for characterization of the effective dielectric constant of random media using a monostatic radar," IEEE Transactions on Geoscience and Remote Sensing, 172-177, 1996.

2. Ulaby, T. B. A., K. Sarabandi, and F. T. Ulaby, "Measuring and modeling the backscattering cross-section of a leaf," Radio Science, Vol. 22, 1109-116, 1987.
doi:10.1029/RS022i006p01109

3. Marr, R. A., U. H. W. Lammers, T. B. Hansen, T. J. Tanigawa, and R. V. McGahan, "Bistatic RCS calculations from cylindrical near — Field measurements — Part II: Experiments," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 12, 3857-3863, December 2006.
doi:10.1109/TAP.2006.886482

4. Sarabandi, K., "Scattering from dielectric structures above impedance surfaces and resistive sheaths," IEEE Transactions on Antennas and Propagation, Vol. 40, 67-78, 1992.
doi:10.1109/8.123359

5. Senior, T. B. A., "Scattering by resistive strips," Radio Science, Vol. 14, No. 5, 912-924, September--October 1979.

6. De Jong, Y. L. C. and M. H. A. J. Herben, "A tree-scattering model for improved propagation prediction in urban microcells," IEEE Transactions on Vehicular Technologies, Vol. 53, No. 2, March 2004.

7. Linner, L. J. P., "Exact formulas for wave impedance and propagation constants of homogeneous, loss dielectric and/or magnetic materials,", Vol. 37, No. 3, March 1989.

8. Chuah, H. T., K. Y. Lee, and T. W. Lau, "Dielectric constant of rubber and oil palm leaf samples at X-band,", Vol. 33, No. 1, 221-223, January 1995.

9. Helhel, S., H. Serbest, A. Vertiy, and B. Çolak, "Bistatic scattering for vegetation canopy investigation," 62nd ARFTG Conference, 273-281, Boulder, Co, USA, December 4--5, 2003.

10. Colak, B., "Scattering from singular leaves in mm band," Technical Report, Space Tech. Dept., 46-51, June 1994.

11. Hsieh, C.-Y., "Dependence of backscattering from leaves on drymatter fraction and permittivity of saline water of leaves," Journal of Microwaves and Optoelectronics, Vol. 3, No. 3, 1-3, December 2003.

12. Helhel, S., A. R. Ellingboe, O. Cerezci, and C. Caman, "Plasma density measurements of confined capacitively coupled plasma by microwave interferometer, and ion energy distribution functions methods," International Journal of Infrared and Millimeter Waves, 1497-1515, November 2006.

13. Chung, B. K., "Dielectric constant measurement for thin material at microwave frequencies," Progress In Electromagnetic Research, Vol. 75, 239-252, 2007.
doi:10.2528/PIER07052801

14. Chung, B. K., "A convenient method for complex permittivity measurement of thin materials at microwave frequencies," Journal of Physics D: Applied Physics, Vol. 39, No. 9, 1926-1931, May 7 2006.
doi:10.1088/0022-3727/39/9/030