Vol. 16
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2010-07-23
Coupled Nonlinear Transmission Lines for Doubling Repetition Rate of Incident Pulse Streams
By
Progress In Electromagnetics Research Letters, Vol. 16, 69-78, 2010
Abstract
We investigated the properties of pulse propagation on coupled nonlinear transmission lines to develop a method for doubling repetition rate of incident pulse streams. Coupled nonlinear transmission lines are two transmission lines with regularly spaced Schottky varactors coupled with each other. It is found that both of the modes developed in a coupled line can support soliton-like pulses because of Schottky varactors. We discuss the fundamental properties of each soliton-like pulse, including the width and velocity, and propose a method of doubling repetition rate of incident pulse streams by managing these soliton-like pulses.
Citation
Koichi Narahara, "Coupled Nonlinear Transmission Lines for Doubling Repetition Rate of Incident Pulse Streams," Progress In Electromagnetics Research Letters, Vol. 16, 69-78, 2010.
doi:10.2528/PIERL10070106
References

1. Hirota, R. and K. Suzuki, "Studies on lattice solitons by using electrical networks," J. Phys. Soc. Jpn., Vol. 28, 1366-1367, 1970.
doi:10.1143/JPSJ.28.1366

2. Rodwell, M. J. W., S. T. Allen, R. Y. Yu, M. G. Case, U. Bhattacharya, M. Reddy, E. Carman, M. Kamegawa, Y. Konishi, J. Pusl, and R. Pullela , "Active and nonlinear wave propagation devices in ultrafast electronics and optoelectronics," Proc. IEEE, Vol. 82, 1037-1059, 1994.
doi:10.1109/5.293161

3. Kintis, M., X. Lan, and F. Fong, "An MMIC pulse generator using dual nonlinear transmission lines," IEEE Microwave Wireless Compo. Lett., Vol. 17, No. 6, 454-456, 2007.
doi:10.1109/LMWC.2007.897799

4. Yildirim, O. O., D. S. Ricketts, and D. Ham, "Reflection soliton oscillator," IEEE Trans. Microwave Theory Tech., Vol. 57, No. 10, 2344-2353, 2009.
doi:10.1109/TMTT.2009.2029025

5. Ndzana, F., A. Mohamadou, and T. C. Kofane, "Dynamics of modulated waves in electrical lines with dissipative elements," Phys. Rev. E, Vol. 79, 047201-047204, 2009.
doi:10.1103/PhysRevE.79.047201

6. Kengne, E., S. T. Chui, and W. M. Liu, "Modulational instability criteria for coupled nonlinear transmission lines with dispersive elements," Phys. Rev. E, Vol. 74, 036614, 2006.
doi:10.1103/PhysRevE.74.036614

7. Gupta, K. C., R. Garg, and I. J. Bahl, Microstrip Lines and Slotlines, Artech, 1979.

8. Taniuti, T., "Reductive perturbation method and far fields of wave equations," Prog. Theor. Phys. Suppl., Vol. 55, 1-35, 1974.
doi:10.1143/PTPS.55.1

9. Narahara, K. and T. Otsuji, "Compression of electrical pulses using traveling-wave field effect transistors," Jpn. J. Appl. Phys., Vol. 38, 4688-4695, 1999.
doi:10.1143/JJAP.38.4688