Vol. 22
Latest Volume
All Volumes
PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2011-03-23
Narrowband Frequency Selective Surface Based on Substrate Integrated Waveguide Technology
By
Progress In Electromagnetics Research Letters, Vol. 22, 19-28, 2011
Abstract
In this paper, a novel narrowband frequency selective surface (FSS) with a stable performance based on substrate integrated waveguide technology is presented. The unit cell of the FSS consists of a double-sided metalized substrate with a circular hole and a SIW circular cavity. In this way, incident EM waves enter the circular cavity and excite a TM110 cavity resonance, leading to a narrow pass-band. The high-Q property of the TM110 cavity resonance provides a very good wide-angle and polarization-independent stability. Both the simulation and experimental results show that such narrowband FSS owes its advantages to high selectivity, low profile stable performance with various incident angles and different polarizations, which is suitable for impulse detections, narrow-band communications, electronic countermeasures, etc.
Citation
Hang Zhou Shaobo Qu Zhibin Pei Jieqiu Zhang Bao-Qin Lin Jiafu Wang Hua Ma Chao Gu Zhuo Xu Peng Bai Wei-Dong Peng , "Narrowband Frequency Selective Surface Based on Substrate Integrated Waveguide Technology," Progress In Electromagnetics Research Letters, Vol. 22, 19-28, 2011.
doi:10.2528/PIERL11022005
http://www.jpier.org/PIERL/pier.php?paper=11022005
References

1. Munk, B. A., Frequency Selective Surfaces: Theory and Design, Wiley, New York, 2000.
doi:10.1002/0471723770

2. Luebbers, R. J. and B. A. Munk, "Some effects of dielectric loading on periodic slot arrays," IEEE Trans. Antennas Propag., Vol. 26, No. 4, 536-542, Jul. 1978.
doi:10.1109/TAP.1978.1141887

3. Baena, J. D., L. Jelinek, R. Marques, J. J. Mock, J. Gollub, and D. R. Smith, "Isotropic frequency selective surfaces made of cubic resonators," Appl. Phys. Lett., Vol. 91, 191105, 2007.
doi:10.1063/1.2806915

4. Wakabayashi, H., M. Kominami, H. Kusaka, and H. Nakashima, "Numerical simulations for frequency-selective screens with complementary elements," IEE Proc. --- Micro. Antennas Propag., Vol. 141, No. 6, 477-482, 1994.
doi:10.1049/ip-map:19941322

5. Lockyers, D. S., J. C. Vardaxpglou, and R. A. Simpkin, "Complementary frequency selective surfaces," IEE Proc. --- Micro. Antennas Propag., Vol. 147, No. 6, 501-507, 2000.
doi:10.1049/ip-map:20000799

6. Hu, X.-D., X.-L. Zhou, L.-S. Wu, L. Zhou, and W.-Y. Yin, "A miniaturized dual-band frequency selective surface (FSS) with closed loop and its complementary pattern," IEEE Antennas Wireless Propag. Lett., Vol. 8, 1374-1377, 2009.

7. Sarabandi, K. and N. Behdad, "A frequency selective surface with miniaturized elements," IEEE Trans. Antennas Propag., Vol. 55, No. 5, 1239-1245, 2007.
doi:10.1109/TAP.2007.895567

8. Bayatpur, F. and K. Sarabandi, "Single-layer, high-order, miniaturized element requency selective surfaces," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 4, 774-781, Apr. 2008.
doi:10.1109/TMTT.2008.919654

9. Chiu, C.-N. and K.-P. Chang, "A novel miniaturized-element frequency selective surface having a stable resonance," IEEE Antennas Wireless Propag. Lett., Vol. 8, 1175-1177, 2009.
doi:10.1109/LAWP.2009.2034766

10. Bayatpur, F. and K. Sarabandi, "Miniaturized FSS and patch antenna array coupling for angle-independent, high-order spatial filtering," IEEE Microw. Wireless Compon. Lett., Vol. 20, No. 2, 79-81, 2010.
doi:10.1109/LMWC.2009.2038517

11. Luo, G. Q., et al., "Theory and experiment of novel frequency selective surface based on substrate integrated waveguide technology," IEEE Trans. Antennas Propag., Vol. 53, No. 12, 4035-4043, Dec. 2005.
doi:10.1109/TAP.2005.860010

12. Luo, G. Q., W. Hong, Q. H. Lai, K. Wu, and L. L. Sun, "Design and experimental verification of compact frequency-selective surface with quasi-elliptic bandpass response-," IEEE Trans. Microw. Theory Tech., Vol. 55, No. 12, 2481-2487, 2007.
doi:10.1109/TMTT.2007.910085

13. Luo, G. Q., W. Hong, H. J. Tang, J. X. Chen, and L. L. Sun, "Triband frequency selective with periodic cell perturbation," IEEE Microw. Wireless Compon. Lett., Vol. 17, No. 6, 2007.
doi:10.1109/LMWC.2007.897793

14. Yang, H.-Y., S.-X. Gong, P.-F. Zhang, and Y. Guan, "Compound frequency selective surface with quasi-elliptic bandpass response," Electron. Lett., Vol. 45, No. 1, 2010.

15. Lima, A. C. De C. and E. A. Parker, "Narrow bandpass single layer frequency selective surfaces," Electron. Lett., Vol. 29, No. 8, 1993.
doi:10.1049/el:19930475

16. Lockyer, D. S. and J. C. Vardaxoglou, "Reconfigurable FSS response from two layers of slotted dipole arrays," Electron. Lett., Vol. 32, No. 6, 1996.
doi:10.1049/el:19960370

17. Parker, E. A. and A. Stanley, "Dual-polarized narrow-bandpass frequency-selective surfaces," Microw. Opt. Techn. Lett., Vol. 13, 105-107, 1996.
doi:10.1002/(SICI)1098-2760(19961005)13:2<105::AID-MOP15>3.0.CO;2-A

18. Mohammad Amjadi, S. and M. Soleimani, "Design of band-pass waveguide filter using frequency selective surfaces loaded with surface mount capcitors based on split-field update FDTD method," Progress In Electromagnetics Research B, Vol. 3, 271-281, 2008.
doi:10.2528/PIERB07122402

19. Zhang, J.-C., Y.-Z. Yin, and J.-P. Ma, "Design of narrow band-pass frequency selective surface for millimeter wave applications," Progress In Electromagnetics Research, Vol. 96, 287-298, 2009.
doi:10.2528/PIER09081702

20. Zhang, Y. L., W. Hong, K. Wu, J. X. Chen, and H. J. Tang, "Novel substrate integrated waveguide cavity filter with defected ground structure," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 4, 2005.

21. Medina, F., F. Mesa, and R. Marqus, "Extraordinary transmission through arrays of electrically small holes from a circuit theory perspective," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 12, 3108-3120, 2008.
doi:10.1109/TMTT.2008.2007343

22. Medina, F., F. Mesa, J. A. Ruiz-Cruz, J. M. Rebollar, and J. R. Montejo-Garai, "Study of extraordinary transmission in a circular waveguide System ," IEEE Trans. Microw. Theory Tech., Vol. 58, No. 6, 1532-1542, 2010.
doi:10.1109/TMTT.2010.2048254

23. Kontogeorgos, A. A., D. P. korfiatis, K. A. T. Thoma, and J. C. Vardaxoglou, "plasma generation in silicon based inductive grid arrays," Optics and Lasers in Engineering, Vol. 47, No. 11, 1195-1198, 2009.
doi:10.1016/j.optlaseng.2009.06.006

24. Doumanis, E. T., J. C. Vardaxoglou, D. P. Korfilatis, and K. A. T. Thoma, "Integrated Schottky-contact in 2-layer inductive grid array," The Second European Conference on Antennas and Propagation, 1-6, 2007.