Vol. 30
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2012-03-15
Effect of Amorphous, Nonmagnetic Barrier Layer on the Performance of a Multisection Wilkinson Broadband Power Divider
By
Progress In Electromagnetics Research Letters, Vol. 30, 145-152, 2012
Abstract
A four-layer metallization Cr-Cu-NiP-Au with amorphous and nonmagnetic NiP as a barrier layer is one of the promising candidates for use in microwave integrated circuits. Multi-section Wilkinson broadband 1:2 power divider circuits are delineated photolithographically on alumina substrates metallized by Cr, TiW, Ni, NiP, copper and gold using different metallization processes. The adhesion and dc resistivity are compared for different metallization scheme. Testing and evaluation have been carried out for multi-section Wilkinson broadband 1:2 power divider in the 10 MHz-6 GHz frequency range for Cr-Cu-Au, TiW-Ni-Au and Cr-Cu-NiP-Au to see the effect of NiP. Insertion loss, return loss and isolation are measured and compared. The microwave properties do not show any appreciable differences due to the various metallizations.
Citation
Rakesh Kumar Sharma, Sandeep Patel, Arun Bindal, and Kamlesh C. Pargaien, "Effect of Amorphous, Nonmagnetic Barrier Layer on the Performance of a Multisection Wilkinson Broadband Power Divider," Progress In Electromagnetics Research Letters, Vol. 30, 145-152, 2012.
doi:10.2528/PIERL12021107
References

1. Keller, C. G. and R. T. Howe, "Nickel-filled hexsil thermally actuated tweezers," Tech. Dig. Papers, Int. Conf. Solid-State Sensors and Actuators, Transducers'95, 376-379, Stockholm, Sweden, 1995.

2. Coombs, Jr., C. F., Printed Circuit Handbook, 5th Ed., McGraw-Hill, New York, United States, 2001.

3. Weil, R., J. H. Lee, I. Kim, and K. Parker, "Comparison of some mechanical and corrosion properties of electroless and electroplated Ni-P alloys," Plating Surf. Finish., Vol. 76, No. 2, 62-66, Feb. 1989.

4. Paunovic, M. and M. Schlesinger, Fundamentals of Electrochemical Deposition, 157-158, John Wiley & Sons, Inc., NY, 1998.

5. Pinnel, M. R. and J. E. Bennett, "Qualitative observations on the diffusion of copper and gold through a nickel barrier," Metallurgical Transactions A, Vol. 7, No. 5, 629-635, 1976.
doi:10.1007/BF03186793

6. Paunovic, M., P. J. Bailey, and R. G. Schad, "Electrochemically deposited diffusion barriers," J. Electrochem. Soc., Vol. 141, 1843-1850, 1994.
doi:10.1149/1.2055015

7. Van der Putten, A. M. T. and J. W. G. de Bakker, "Geometrical effects in the electroless metallization of fine metal patterns," J. Electrochem. Soc., Vol. 140, 2221, 1993.
doi:10.1149/1.2220799

8. Gawrilow, G. G., Chemical (Electroless) Nickel-Plating, Portcullis Press Ltd., Redhill, United Kingdom, 1979.

9. Revesz, A., J. Lendvai, J. Loranth, J. Padar, and I. Bakonyi, "Studies of an electroless plated Ni-P amorphous alloy," J. Electrochem. Soc., Vol. 148, c715-c720, 2001.
doi:10.1149/1.1405518

10. Balaraju, J. N. and K. S. Rajam, "Electroless deposition and characterization of high phosphorus Ni-P-Si3N4 composite coatings," Int. J. Electrochem. Sci., Vol. 2, 747-761, 2007.

11. Ruolf, A. L., Materials Science, Chapters 4 and 32, Prentice-Hall, NJ, 1973.

12. Safranek, W. H., The Properties of Electrodeposited Metals and Alloys, 2nd Ed., Chapter 23, American Electroplaters and Surface Finishers Society, Orlando, El, 1986.

13. Kishihara, M., et al. "A design of multi-stage, multi-way microstrip power dividers with broadband properties," IEEE MTT-S Digest, Vol. 1, 69-72, June 2004.