Vol. 35
Latest Volume
All Volumes
PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2012-09-18
Unsupervised Target Detection in SAR Images Using Scattering Center Model and Mean Shift Clustering Algorithm
By
Progress In Electromagnetics Research Letters, Vol. 35, 11-18, 2012
Abstract
A new framework for target detection in synthetic aperture radar (SAR) images is proposed. We focus on the task of locating reflective small regions using scattering centers model and clustering algorithm. Unlike most of the approaches in target detection, we address an algorithm that incorporates total variation filtering and mean shift clustering instead of parameter estimation. Our approach is validated by a series of tests on real SAR images and compared with other target detection algorithms, demonstrating that it configures a novel and efficient method for target-detection purpose.
Citation
Meng Yang Gong Zhang , "Unsupervised Target Detection in SAR Images Using Scattering Center Model and Mean Shift Clustering Algorithm," Progress In Electromagnetics Research Letters, Vol. 35, 11-18, 2012.
doi:10.2528/PIERL12071109
http://www.jpier.org/PIERL/pier.php?paper=12071109
References

1. Chan, Y. K. and V. C. Koo, "An introduction to synthetic aperture radar (SAR)," Progress In Electromagnetics Research B, Vol. 2, 27-60, 2008.
doi:10.2528/PIERB07110101

2. Ai, J. Q. , X. Y. Qi, W. D. Yu, Y. K. Deng, F. Liu, L. Shi, and , "A new CFAR ship detection algorithm based on 2-D joint log-normal distribution in SAR images," IEEE Geoscience and Remote Sensing Letters, Vol. 7, No. 4, 806-810, 2010.
doi:10.1109/LGRS.2010.2048697

3. Wei, S. J., X. L. Zhang, and J. Shi, "Linear array SAR imaging via compressed sensing," Progress In Electromagnetics Research, Vol. 117, 299-319, 2011.

4. Wei, S. J., X. L. Zhang, J. Shi, and G. Xiang, "Sparse reconstruction for SAR imaging based on compressed sensing," Progress In Electromagnetics Research, Vol. 109, 63-81, 2010.
doi:10.2528/PIER10080805

5. Wu, J., "Compressive sensing SAR image reconstruction based on Bayesian framework and evolutionary computation," IEEE Transactions on Image Processing, Vol. 20, No. 7, 1904-1911, 2011.
doi:10.1109/TIP.2010.2104159

6. Wang, Z. M. and M. M. Wang, "Fast and adaptive method for SAR superresolution imaging based on point scattering model and optimal basis selection," IEEE Transactions on Image Processing, Vol. 18, No. 7, 1477-1486, 2009.
doi:10.1109/TIP.2009.2017327

7. Tu, M. W. and I. J. Gupta, "Application of maximum likelihood estimation to radar imaging," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 1, 20-27, 1997.
doi:10.1109/8.554236

8. Chambolle, A., "An algorithm for total variation minimization and applications," Journal of Mathematical Imaging and Vision, Vol. 20, 89-97, 2004.
doi:10.1023/B:JMIV.0000011320.81911.38

9. Comaniciu, D. and P. Meer, "Mean shift: A robust approach toward feature space analysis," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 24, No. 5, 603-619, 2002.
doi:10.1109/34.1000236

10. Centre for Remote Imaging, Sensing and Processing (CRISP), , Accessed: June 2012, Available: http://geochange.er.usgshttp://www.crisp.nus.edu.sg/┬╗research/ship detect/ship det.htm .