Vol. 60
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2016-05-12
Estimating Termination Effect on Electric and Magnetic Field-to-Line Coupling for Radiated Immunity Tests Using a TEM Cell
By
Progress In Electromagnetics Research Letters, Vol. 60, 39-44, 2016
Abstract
An analytic model of the field-to-line coupling in time domain for electrically small lines using a transverse electromagnetic (TEM) cell is proposed in this paper. This model uses mutual capacitance and mutual inductance to represent electric and magnetic field couplings which can be obtained based on voltage and current dividers. The measurement and calculation results validate the accuracy of the model. The termination effect on electromagnetic interference (EMI) responses and the separation of electric and magnetic field couplings are investigated by the model. The results indicate relevant suppressions for radiated immunity. This model is convenient for fast radiated immunity estimations.
Citation
Chunlei Shi, Changchun Chai, Yintang Yang, and Wenxiao Fang, "Estimating Termination Effect on Electric and Magnetic Field-to-Line Coupling for Radiated Immunity Tests Using a TEM Cell," Progress In Electromagnetics Research Letters, Vol. 60, 39-44, 2016.
doi:10.2528/PIERL16030902
References

1. Lagos, J. L. and F. L. Fiori, "Worst-case induced disturbances in digital and analog interchip interconnects by an external electromagnetic plane wave-Part I: Modeling and algorithm," IEEE Trans. on Electromagnetic Compatibility, Vol. 53, No. 1, 178-184, 2011.
doi:10.1109/TEMC.2010.2085005

2. Magdowski, M. and R. Vick, "Closed-form formulas for the stochastic electromagnetic field coupling to a transmission line with arbitrary loads," IEEE Trans. on Electromagnetic Compatibility, Vol. 54, No. 5, 1147-1152, 2012.
doi:10.1109/TEMC.2012.2193130

3. Land, S. O., M. Ramdani, R. Perdriau, et al. "Using a modified Taylor cell to validate simulation and measurement of field-to-shorted-trace coupling," IEEE Trans. on Electromagnetic Compatibility, Vol. 56, No. 4, 864-870, 2014.
doi:10.1109/TEMC.2014.2313231

4. Land, S. O., T. Mandic, M. Ramdani, et al. "Comparison of field-to-line coupling models: Coupled transmission lines model versus single-cell corrected Taylor model," Proc. Int. Symp. on Electromagnetic Compatibility (EMC Europe), 276-281, 2013.

5. Mandic, T., B. Pejcinovic, and A. Baric, "Comparison of simulation and measurement of time-timedomain," Proc. Int. Symp. on Electromagnetic Compatibility (EMC Europe), 681-685, 2014.

6. Kasturi, V., S. Deng, T. Hubing, et al. "Quantifying electric and magnetic field coupling from integrated circuits with TEM cell measurements," Proc. IEEE Int. Symp. Electromagnetic Compatibility, Vol. 2, 422-425, 2006.

7. Deng, S., T. Hubing, and D. Beetner, "Characterizing the electric field coupling from IC heatsink structures to external cables using TEM cell measurements," IEEE Trans. on Electromagnetic Compatibility, Vol. 49, No. 4, 785-791, 2007.
doi:10.1109/TEMC.2007.908825

8. Deng, S., T. Hubing, and D. Beetner, "Using TEM cell measurements to estimate the maximum radiation from PCBs with cables due to magnetic field coupling," IEEE Trans. on Electromagnetic Compatibility, Vol. 50, No. 2, 419-423, 2008.
doi:10.1109/TEMC.2008.919026

9. Shi, C., W. Fang, C. Chai, et al. "Using termination effect to characterize electric and magnetic field coupling between TEM cell and microstrip line," IEEE Trans. on Electromagnetic Compatibility, Vol. 57, No. 6, 1338-1344, 2015.
doi:10.1109/TEMC.2015.2459063

10. "Integrated circuits, measurement of electromagnetic emissions Part 2: Measurement of radiated emissions, TEM cell and wideband TEM cell method," IEC 61967-2, 1st Edition, 2005.

11. "Integrated circuits, measurement of electromagnetic immunity Part 2: Measurement of radiated immunity, TEM cell and wideband TEM cell method," IEC 62132-2, 1st Edition, 2010.

12. Ludwig, R. and G. Bogdanov, RF Circuit Design Theory and Applications, 2nd Ed., Publishing House of Electronics Industry, Beijing, 2010.