Vol. 65
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2016-12-22
The Correlation Analysis of Exposure to the Electromagnetic Field from Base Stations
By
Progress In Electromagnetics Research Letters, Vol. 65, 23-30, 2017
Abstract
The effects of exposure to the electromagnetic field from base stations have received considerable attention. Currently, researches have shown that the exposure level from a base station varies with time due to the traffic. The traffic for mobile communications has a temporal and spatial correlation. In this paper, we develop an approach to study the variation law of exposure to the base stations and analyze the correlation of exposure in time and in space. We use a spectrum analyzer to measure the transmission power of the base stations at the different periods of a day. We obtain the analytical expressions for representing the variation of exposure with time using Genetic Algorithm. The self correlation of exposure to a single base station in time series and the cross correlation of exposure to base stations in the same area are both discussed. We find that the self correlation coefficients of exposure to a single base station are more than 0.9 in two hours and more than 0.5 in eleven hours. Particularly, the spatial correlation of exposure is slightly stronger than the time correlation and the cross correlation coefficients are up to 0.99.
Citation
Wan Chun Yang, Yongjun Liu, Bodong Li, and Chunhong Cao, "The Correlation Analysis of Exposure to the Electromagnetic Field from Base Stations," Progress In Electromagnetics Research Letters, Vol. 65, 23-30, 2017.
doi:10.2528/PIERL16041201
References

1. Martens, A. L., J. F. Bolte, J. Beekhuizen, H. Kromhout, T. Smid, and R. C. Vermeulen, "Validity of at home model predictions as a proxy for personal exposure to radiofrequency electromagnetic fields from mobile phone base stations," Progress In Environmental Research, Vol. 142, 221-226, 2015.
doi:10.1016/j.envres.2015.06.029

2. Plets, D., W. Joseph, K. Vanhecke, and L. Martens, "Exposure optimization in indoor wireless networks by heuristic network planning," Progress In Electromagnetics Research, Vol. 139, 445-478, 2013.
doi:10.2528/PIER13013003

3. Beekhuizen, J., G. B. Heuvelink, A. Huss, A. B¨urgi, H. Kromhout, and R. Vermeulen, "Impact of input data uncertainty on environmental exposure assessment models: A case study for electromagnetic field modelling from mobile phone base stations," Progress In Environmental Research, Vol. 135, 148-155, 2014.
doi:10.1016/j.envres.2014.05.038

4. Miclaus, S., P. Bechet, and C. Iftode, "The application of a channel-individualized method for assessing long-term, realistic exposure to radiofrequency radiation emitted by mobile communication base station antennas," Measurement, Vol. 46, No. 3, 1355-1362, 2013.

5. Ozdemir, A. R., M. Alkan, and M. Gulsen, "Time dependence of environmental electric field measurements and analysis of cellular base stations," IEEE Electromagnetic Compatibility Magazine, Vol. 3, No. 3, 43-48, 2014.
doi:10.1109/MEMC.2014.6924327

6. Urbinello, D., W. Joseph, L. Verloock, L. Martens, and M. Roosli, "Temporal trends of radio-frequency electromagnetic field (RF-EMF) exposure in everyday environments across European cities," Progress In Environmental Research, Vol. 134, 134-142, 2014.
doi:10.1016/j.envres.2014.07.003

7. Koprivica, M., M. Petric, M. Popovic, J. Milinkovic, S. Niksic, and A. Neskovic, "Long-term variability of electromagnetic field strength for GSM 900 MHz downlink band in Belgrade urban area," 2014 22nd IEEE Telecommunications Forum Telfor (TELFOR), 9-12, 2014.
doi:10.1109/TELFOR.2014.7034346

8. He, Q. Q., W. C. Yang, and Y. X. Hu, "Accurate method to estimate EM radiation from a GSM base station," Progress In Electromagnetics Research M, Vol. 34, 19-27, 2014.
doi:10.2528/PIERM13091301

9. Hu, Z., Y. C. Chen, L. Qiu, G. Xue, H. Zhu, N. Zhang, and C. He, "An in-depth analysis of 3G traffic and performance," Proceedings of the 5th Workshop on All Things Cellular: Operations, Applications and Challenges, 1-6, ACM, 2015.
doi:10.1145/2785971.2785981

10. Romero, J. P., O. Sallent, R. Agusti, and M. A. Diaz-Guerra, Radio Resource Management Strategies in UMTS, John Wiley & Sons, 2005.
doi:10.1002/0470022795.ch1

11. Neskovic, N., M. Koprivica, A. Neskovic, and G. Paunovic, "Improving the efficiency of measurement procedures for assessing human exposure in the vicinity of mobile phone (GSM/DCS/UMTS) base stations," Radiation Protection Dosimetry, ncr248, 2011.

12. Olivier, C. and L. Martens, "Optimal settings for narrow-band signal measurements used for exposure assessment around GSM base stations," IEEE Transactions on Instrumentation and Measurement, Vol. 54, No. 1, 311-317, 2005.
doi:10.1109/TIM.2004.838114

13. Olivier, C. and L. Martens, "Optimal settings for frequency-selective measurements used for the exposure assessment around UMTS base stations," IEEE Transactions on Instrumentation and Measurement, Vol. 56, No. 5, 1901-1909, 2007.
doi:10.1109/TIM.2007.903617

14. Nan, E., X. Chu, W. Guo, and J. Zhang, "User data traffic analysis for 3G cellular networks," 2013 IEEE Conference on 8th International ICST Communications and Networking in China (CHINACOM), 468-472, 2013.
doi:10.1109/ChinaCom.2013.6694641

15. Suli, E. and D. F. Mayers, An Introduction to Numerical Analysis, Cambridge University Press, 2003.
doi:10.1017/CBO9780511801181