Vol. 69
Latest Volume
All Volumes
PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2017-07-07
Genetic Algorithm Optimized X-Band Absorber Using Metamaterials
By
Progress In Electromagnetics Research Letters, Vol. 69, 59-64, 2017
Abstract
This paper presents a novel, Genetic Algorithm (GA) optimized X-band absorber using metamaterials. The unit cell of this structure consists of several square patches, each having a dimension of 2.5 mm x 2.5 mm. Their positions are optimized using the GA such that the X-band absorption is maximized. Simulation results and the subsequent experimental validation affirm that the structure offers absorption of 97% from 10.42 GHz to 11.98 GHz and absorption of 90% over the entire X-band from 8 GHz to 9 GHz and also from 9.35 GHz to 12 GHz, with peak absorption of 99.95% at 10.52 GHz. The results are compared with the existing ones, to demonstrate the superiority of the proposed design.
Citation
Rahul Pelluri Bhargav Appasani , "Genetic Algorithm Optimized X-Band Absorber Using Metamaterials," Progress In Electromagnetics Research Letters, Vol. 69, 59-64, 2017.
doi:10.2528/PIERL17051902
http://www.jpier.org/PIERL/pier.php?paper=17051902
References

1. Engheta, N. and R. W. Ziolkowski, Electromagnetic Metamaterials: Physics and Engineering Explorations, John Wiley & Sons, 2006.

2. Vendik, I. B. and O. G. Vendik, "Metamaterials and their application in microwaves: A review," Technical Physics, Vol. 58, No. 1, 1-24, 2013.
doi:10.1134/S1063784213010234

3. Eleftheriades, G. V. and K. G. Balmain, Negative Refraction Metamaterials: Fundamental Principles and Applications, John Wiley & Sons, 2005.
doi:10.1002/0471744751

4. Appasani, B. and N. Gupta, "A novel wide band-gap structure for improved signal integrity," International Journal of Microwave and Wireless Technologies, Vol. 8, No. 03, 591-596, 2016.
doi:10.1017/S1759078715000823

5. Holloway, C. L., E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, "An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials," IEEE Antennas and Propagation Magazine, Vol. 54, No. 2, 10-35, 2012.
doi:10.1109/MAP.2012.6230714

6. Pelluri, R., N. Gupta, and B. Appasani, "A multi band absorber using band gap structures," 2015 International Conference on Microwave and Photonics, 1-2, Dhanbad, 2015.

7. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Phys. Rev. Lett., Vol. 100, 207402, 2008.
doi:10.1103/PhysRevLett.100.207402

8. Kim, G. and B. Lee, "Design of wideband absorbers using RLC screen," Electronics Letters, Vol. 51, No. 11, 834-836, 2015.
doi:10.1049/el.2014.4084

9. Lim, D., D. Lee, and S. Lim, "Angle-and polarization-insensitive metamaterial absorber using via array," Scientific Reports, Vol. 6, 39686, 2016.
doi:10.1038/srep39686

10. Dincer, F., M. Karaaslan, E. Unal, and C. Sabah, "Dual-band polarization independent metamaterial absorber based on omega resonator and octa-star strip configuration," Progress In Electromagnetics Research, Vol. 141, 219-231, 2013.
doi:10.2528/PIER13061105

11. Huang, L. and H. Chen, "Multi-band and polarization insensitive metamaterial absorber," Progress In Electromagnetics Research, Vol. 113, 103-110, 2011.
doi:10.2528/PIER10122401

12. Lee, H.-M., "A broadband flexible metamaterial absorber based on double resonance," Progress In Electromagnetics Research Letters, Vol. 46, 73-78, 2014.
doi:10.2528/PIERL14031804

13. Ayop, O. B., M. K. Abd Rahim, N. A. Murad, N. A. Samsuri, and R. Dewan, "Triple band circular ring-shaped metamaterial absorber for x-band applications," Progress In Electromagnetics Research M, Vol. 39, 65-75, 2014.
doi:10.2528/PIERM14052402

14. Campbell, S. D. and R. W. Ziolkowski, "Lightweight, flexible, polarization-insensitive, highly absorbing meta-films," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 3, 1191-1200, 2013.
doi:10.1109/TAP.2012.2227658

15. Lee, J. and S. Lim, "Bandwidth-enhanced and polarisation-insensitive metamaterial absorber using double resonance," Electronics Letters, Vol. 47, No. 1, 8-9, January 6, 2011.
doi:10.1049/el.2010.2770

16. Sen, G., et al., "Ultra-thin miniaturized metamaterial perfect absorber for X-band application," Microwave and Optical Technology Letters, Vol. 58, No. 10, 2367-2370, 2016.
doi:10.1002/mop.30048

17. Ozden, K., O. M. Yucedag, and H. Kocer, "Metamaterial based broadband RF absorber at X-band," International Journal of Electronics and Communications, Vol. 70, No. 8, 1062-1070, 2016.
doi:10.1016/j.aeue.2016.05.002

18. Sharma, S. K., S. Ghosh, and K. V. Srivastava, "An ultra-thin triple-band polarization-insensitive metamaterial absorber for S, C and X band applications," Appl. Phys. A, Vol. 122, No. 12, 1071, 2016.
doi:10.1007/s00339-016-0588-4

19. Sabah, C., "Perfect metamaterial absorbers with polarization angle independency in X-band waveguide," Modern Physics Letters B, Vol. 30, No. 11, 1650186, 2016.
doi:10.1142/S0217984916501864

20. Kim, B.-K. and B. Lee, "Wideband absorber at X-band adopting trumpet-shaped structures," Electronics Letters, Vol. 50, No. 25, 1957-1959, 2014.
doi:10.1049/el.2014.2780

21. Goldberg, D. E., Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley, New York, 1989.

22. Kovacs, P. and Z. Raida, "Global evolutionary algorithms in the design of electromagnetic band gap structures with suppressed surface waves propagation," Radioengineering, Vol. 19, No. 1, 2010.

23. Bhattacharyya, S., S. Ghosh, and K. V. Srivastava, "Equivalent circuit model of an ultra-thin polarization-independent triple band metamaterial absorber," AIP Advances, Vol. 4, No. 9, 097127, 2014.
doi:10.1063/1.4896282