Vol. 73
Latest Volume
All Volumes
PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2018-01-23
A Broadband Low-Loss WR10 Waveguide to Microstrip Line Transition with T-Shaped Probe
By
Progress In Electromagnetics Research Letters, Vol. 73, 17-22, 2018
Abstract
A novel W-band WR 10 waveguide to microstrip line transition is designed, simulated in a 3D full-wave EM simulation software, fabricated, and evaluated by measurements. The main advantages of this transition are frequency-flat transmission, low reflection, and uncomplicated fabrication. Simulation shows a reflection coefficient of better than -23 dB from 75 to 90 GHz for one hollow waveguide to microstrip line transition. The port reflections increase for a fabricted prototype with two transitions and a connecting microstrip line to a level of about -14 dB. This is mainly caused by fabrication tolerances. The overall transmission of the dual transition prototype is found at a very satisfactory level of about -4.8 dB at 90 GHz for a connecting microstrip line with a length of 45 mm corresponding to an estimated loss of approximately 0.6 dB for a single transition.
Citation
Gerhard F. Hamberger Uwe Siart Thomas F. Eibert , "A Broadband Low-Loss WR10 Waveguide to Microstrip Line Transition with T-Shaped Probe," Progress In Electromagnetics Research Letters, Vol. 73, 17-22, 2018.
doi:10.2528/PIERL17081109
http://www.jpier.org/PIERL/pier.php?paper=17081109
References

1. Electronic Communications Committee (ECC), within the European Conference of Postal and Telecommunications Administration (CEPT), ECC Recommendation (09)01: Use of the 57– 64 GHz frequency band for point-to-point fixed wireless systems, Jan. 2009, [Online], Available: http://www.erodocdb.dk/docs/doc98/official/pdf/Rec0901.pdf.

2. Sun, J., F.-G. Liang, L.-H. Han, X.-Y. Sun, and Y.-Q. Zheng, Waveguide-to-microstrip antipodal finline transition at W band, 3rd Intern. Conf. on Instrumentation, Measurement, Computer, Communication and Control, 510-513, 2013.

3. Grabherr, W., W. G. B. Huder, and W. Menzel, "Microstrip to waveguide transition compatible with mm-wave integrated circuits," IEEE Trans. Microw. Theory Techn., Vol. 42, No. 9, 1842-1843, 1994.
doi:10.1109/22.310597

4. Deguchi, Y., K. Sakakibara, N. Kikuma, and H. Hirayama, Millimeter-wave microstrip-towaveguide transition operating over broad frequency bandwidth, MTT-S International Microwave Symposium Digest, 2107-2110, 2005.

5. Brazalez, A. A., E. Rajo-Iglesias, J. L. Vazquez-Roy, A. Vosoogh, and P. S. Kildal, "Design and validation of microstrip gap waveguides and their transitions to rectangular waveguide, for millimeter-wave applications," IEEE Trans. Microw. Theory Techn., Vol. 63, No. 12, 4035-4050, 2015.
doi:10.1109/TMTT.2015.2495141

6. Seo, K., Planar microstrip-to-waveguide transition in millimeter-wave band, Advancement in Microstrip Antennas with Recent Applications, INTECH Open Access Publisher, 2013.

7. Seo, K., A. Nakatsu, K. Sakakibara, and N. Kikuma, Via-hole-less planar microstrip-to-waveguide transition in millimeter-wave band, China-Japan Joint Microw. Conf., 1-4, 2011.

8. Pozar, D. M., Microwave Engineering, 4th Ed., John Wiley & Sons, New Jersey, 2012.

9. Spinner GmbH, TD-00036, cross reference for hollow metallic waveguides, Munich, Germany, 2017, [Online], Available: http://www.spinner- group.com/images/download/technical documents/SPINNER TD00036.pdf.

10. Hamberger, G. F., S. Trummer, U. Siart, and T. F. Eibert, "A single layer dual linearly polarized microstrip patch antenna array for automotive applications in the 77GHz band," IEEE Intern. Symp. on Phased Array Systems and Techn., 1-4, 2016.

11. Spinner GmbH, TD-00077, anges for ordinary rectangular waveguides, Munich, Germany, 2017, [Online], Available: http://www.spinner- group.com/images/download/technical documents/ SPINNER TD00077.pdf.

12. Rogers, RO3000 series circuit materials, 2017, [Online], Available: www.rogerscorp.com/documents/722/acs/RO3000-Laminate-Data-Sheet-RO3003-RO3006-RO3010.pdf/.

13. CST Computer Simulation Technology, Microwave Studio, Darmstadt, Germany, 2017, [Online], Available: http//www.cst.com.

14. LPKF, Technische Daten: LPKF Protolaser S, Garbsen, Germany, 2017, [Online], Available: www.lpkf.de/produkte/rapid-pcb-prototyping/laserstrukturierung/laser-strukturierenleiterplatten-prototypen.