Vol. 86
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2019-08-20
Side-Lobe Suppression for the Third Harmonic Resonance of Planar Dipole Antennas Using High Refractive Index Metamaterials
By
Progress In Electromagnetics Research Letters, Vol. 86, 113-120, 2019
Abstract
In this paper, a simple and effective side-lobe suppression technique is proposed by using integrated high refractive index matematerial (HRIM). It is known that current reversal, which occurs at the third harmonic of the dipole natural frequency, disturbs the omnidirectional radiation pattern of a dipole antenna, and the main beam splits into two side lobes. For suppressing the two side lobes and maintaining consistent radiation pattern purposes, two regions of HRIMs are integrated along the side-lobe radiation direction of a reflector-backed dipole antenna to tilt the two side lobes toward the broadside radiation direction. The HRIM is constructed with 2X3 H-shaped unit-cells periodically printed on the single side of dielectric substrates. The beam-tilting approach described here uses the phenomenon that the EM wave undergoes a phase shift when entering a medium of different refractive indices. Simulation and measurement results show that by implementing the HRIMs, the two side lobes are tilted toward the broadside radiation direction, and as a result, the side lobe is suppressed, and radiation consistency for the first and third harmonic resonances is realized. Moreover, the antenna gain for the third harmonic is achieved as high as 7.8 dBi, which is an increase of approximately 3 dBi compared with the fundamental resonance.
Citation
Xiaofei Zhang, Guang-Ming Wang, and Jian-Gang Liang, "Side-Lobe Suppression for the Third Harmonic Resonance of Planar Dipole Antennas Using High Refractive Index Metamaterials," Progress In Electromagnetics Research Letters, Vol. 86, 113-120, 2019.
doi:10.2528/PIERL19052902
References

1. Balanis, C. A., Advanced Engineering Electromagnetics, Wiley, New York, NY, USA, 1989.

2. Laport, E. A., H. Jasik, and Editor, "Long-wire antennas," Antenna Engineering Handbook, 1st Edition, Chapter 4, 4-35, McGraw-Hill, New York, NY, USA, 1961.

3. Zhu, S. S., H. W. Liu, and P. Wen, "A new method for achieving miniaturization and gain enhancements of Vivaldi antenna based on anisotropic metasurfaces," IEEE Trans. Antennas Propag., Vol. 10, No. 12, 102-135, Jan. 2019.

4. Yang, Z. Q., L. M. Yang, and T. Yang, "A microstrip magnetic Yagi-uda antenna employing vertical I-shaped resonators as parasitic elements," IEEE Trans. Antennas Propag., Vol. 60, No. 12, 5613-5626, Dec. 2018.

5. Antoniades, M. A. and G. V. Eleftheriades, "Multiband compact printed dipole antennas using NRI-TL metamaterial loading," IEEE Trans. Antennas Propag., Vol. 60, No. 12, 5613-5626, Dec. 2012.
doi:10.1109/TAP.2012.2211324

6. Li, D., Z. Szabó, X. Qing, E.-P. Li, and Z. Chen, "A high gain antenna with an optimized metamaterial inspired superstrate," IEEE Trans. Antennas Propag., Vol. 60, No. 12, 6018-6023, Dec. 2012.
doi:10.1109/TAP.2012.2213231

7. Jafargholi, A., M. Kamyam, and M. veysi, "Artificial magnetic conductor loaded monopole antenna ," IEEE Antennas Wireless Propag. Lett., Vol. 9, 211-214, 2010.
doi:10.1109/LAWP.2010.2046008

8. Wei, K., Z. J. Zhang, Z. H. Feng, and M. F. Iskander, "A Wideband MNG-TL dipole antenna with stable radiation patterns," IEEE Trans. Antennas Propag., Vol. 61, No. 5, 2418-2424, 2013.
doi:10.1109/TAP.2013.2241717

9. Dadgarpou, A., B. Zarghooni, B. S. Virdee, and T. A. Denidni, "Beam tilting antenna using integrated metamaterial loading," IEEE Trans. Antennas Propag., Vol. 62, No. 5, 2874-2879, 2014.
doi:10.1109/TAP.2014.2308516

10. Chen, X., T. M. Grzegorczyk, B. I. Wu, J. Pacheco, Jr., and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Phys. Rev. Lett., Vol. E 70, 016608, 2004.

11. Qu, S.-W., J.-L. Li, Q. Xue, and C.-H. Chan, "Wideband periodic endfire antenna with bowtie dipoles," IEEE Antennas Wireless Propag. Lett., Vol. 7, 314-317, 2008.