Vol. 93
Latest Volume
All Volumes
PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2020-08-04
Low Permittivity Environmentally Friendly Lenses for Ku Band
By
Progress In Electromagnetics Research Letters, Vol. 93, 1-7, 2020
Abstract
Lenses can be used to focus and disperse the electric field emitted by the antenna. Sustainable and environmentally friendly lenses were made from lithium molybdenum oxide (LMO) glass composite. Half spherical lenses with a diameter of a 30 mm were fabricated from LMO composite, and the antenna properties were measured with a waveguide feed. The lens enhanced radiation pattern was measured at Ku band, and the improvement in the gain was found to be 2 dB.
Citation
Mikko Kokkonen, Mikko Nelo, Jiangcheng Chen, Sami Myllymäki, and Heli Jantunen, "Low Permittivity Environmentally Friendly Lenses for Ku Band," Progress In Electromagnetics Research Letters, Vol. 93, 1-7, 2020.
doi:10.2528/PIERL20060108
References

1. Sauleau, R., C. A. Fernandes, and J. R. Costa, "Review of lens antenna design and technologies for mm-wave shaped-beam applications," ANTEM 2005 --- 11th Int. Symp. Antenna Technol. Appl. Electromagn. Conf. Proc., 1-5, St. Malo, France, 2005.

2. Sebastian, M. T. and H. Jantunen, "Low loss dielectric materials for LTCC applications: A review," Int. Mater. Rev., Vol. 53, No. 2, 57-90, Mar. 2008.
doi:10.1179/174328008X277524

3. Kahari, H., M. Teirikangas, J. Juuti, and H. Jantunen, "Dielectric properties of lithium molybdate ceramic fabricated at room temperature," J. Am. Ceram. Soc., Vol. 97, No. 11, 3378-3379, Nov. 2014.
doi:10.1111/jace.13277

4. Kahari, H., M. Teirikangas, J. Juuti, and H. Jantunen, "Improvements and modifications to room-temperature fabrication method for dielectric Li2MoO4 ceramics," J. Am. Ceram. Soc., Vol. 98, No. 3, 687-689, Mar. 2015.
doi:10.1111/jace.13471

5. Kahari, H., P. Ramachandran, J. Juuti, and H. Jantunen, "Room-temperature-densified Li2MoO4 ceramic patch antenna and the effect of humidity," Int. J. Appl. Ceram. Technol., Vol. 14, No. 1, 50-55, Jan. 2017.
doi:10.1111/ijac.12615

6. Kahari, H., M. Teirikangas, J. Juuti, and H. Jantunen, "Room-temperature fabrication of microwave dielectric Li2MoO4-TiO2 composite ceramics," Ceram. Int., Vol. 42, No. 9, 11442-11446, Jul. 2016.
doi:10.1016/j.ceramint.2016.04.081

7. Ji, Y., K. Song, X. Luo, B. Liu, H. B. Bafrooei, and D. Wang, "Microwave dielectric properties of (1 - x) Li2MoO4-xMg2SiO4 composite ceramics fabricated by cold sintering process," Front. Mater., 6, Oct. 2019.

8. Vaataja, M., H. Kahari, K. Ohenoja, M. Sobocinski, J. Juuti, and H. Jantunen, "3D printed dielectric ceramic without a sintering stage," Sci. Rep., Vol. 8, No. 1, 15955, Dec. 2018.
doi:10.1038/s41598-018-34408-5

9. Nelo, M., H. Liimatainen, M. Vaataja, J. Ukkola, J. Juuti, and H. Jantunen, "Solid air-low temperature manufacturing of ultra-low permittivity composite materials for future telecommunication systems," Front. Mater., 6, 2019.

10. Lauwers, B., F. Klocke, A. Klink, A. Erman Tekkaya, R. Neugebauer, and D. Mcintosh, "Hybrid processes in manufacturing," CIRP Ann., Vol. 63, No. 2, 561-583, 2014.
doi:10.1016/j.cirp.2014.05.003

11. Hinton, J., M. Mirgkizoudi, A. Campos-Zatarain, D. Flynn, R. A. Harris, and R. W. Kay, "Digitally-driven hybrid manufacture of ceramic thick-film substrates," 2018 7th Electron. Syst. Technol. Conf., 1-5, IEEE, Dresden, Germany, Sep. 2018.

12. Jankovic, U., N. Mohottige, D. Budimir, and O. Glubokov, "Hybrid manufactured waveguide resonators and filters for mm-wave applications," 2017 IEEE MTT-S Int. Microw. Work. Ser. Adv. Mater. Process. RF THz Appl., 1-3, IEEE, Pavia, Italy, Sep. 2017.

13. Revier, D. L. and M. M. Tentzeris, "A low-cost, single platform, hybrid manufacturing system for RF passives," 2017 IEEE Radio Wirel. Symp., 83-85, IEEE, Phoenix, AZ, USA, Jan. 2017.

14. Chen, Z., Z. Li, J. Li, C. Liu, C. Lao, Y. Fu, C. Liu, Y. Li, P. Wang, and Y. He, "3D printing of ceramics: A review," J. Eur. Ceram. Soc., Vol. 39, No. 4, 661-667, Apr. 2019.
doi:10.1016/j.jeurceramsoc.2018.11.013