Vol. 99
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2021-08-21
A CPW Fed Clown-Shaped Super Wideband Antenna
By
Progress In Electromagnetics Research Letters, Vol. 99, 159-167, 2021
Abstract
A Clown-shaped patch antenna for super wideband applications is presented. The radiator is placed on a 1.6 mm thick, RT/Duroid 5880 substrate and is fed using a 50 Ω symmetric coplanar waveguide. The size of the proposed antenna is 26 × 27 mm2 (0.256λL × 0.266λL, where λL is the wavelength at the lower band edge frequency i.e. 2.96 GHz). The radiator is a combination of an ellipse, a rectangle, and a triangle. An impedance bandwidth of 2.96 GHz to more than 100 GHz (i.e. more than 33.78:1 ratio bandwidth) is achieved. Nearly-omnidirectional radiation patterns with an average gain of 6 dBi are achieved. A fractional bandwidth greater than 188.5%, a size reduction of ~97%, and a comparable bandwidth dimension ratio of 2768 are achieved. The investigated antenna has additional advantages like compactness, planar geometry, and super-wide bandwidth.
Citation
Rahul Kumar Garg, Sarthak Singhal, and Raghuvir S. Tomar, "A CPW Fed Clown-Shaped Super Wideband Antenna," Progress In Electromagnetics Research Letters, Vol. 99, 159-167, 2021.
doi:10.2528/PIERL21070502
References

1. Schantz, H. G., "A brief history of UWB antennas," IEEE Aerospace and Electronic Systems Magazine, Vol. 19, No. 4, 22-26, 2004.
doi:10.1109/MAES.2004.1301770

2. Wiesbeck, W., G. Adamiuk, and C. Sturm, "Basic properties and design principles of UWB antennas," Proceedings of the IEEE, Vol. 97, No. 2, 372-385, 2009.
doi:10.1109/JPROC.2008.2008838

3. Electronic Communications Committee "The European table of frequency allocations and applications in the frequency range 8.4 kHz to 3000 GHz," European Conf. Postal and Telecommunications Administrations, 132-133, February 2013.

4. Rao, Q. and W. Geyi, "Compact multi-band antenna for handheld devices," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 10, 3337-3339, 2009.
doi:10.1109/TAP.2009.2029384

5. Standard, F.C.C., "First-order and report, revision of part 15 of the commission's rules regarding UWB transmission systems,", 2002.

6. Balani, W., M. Sarvagya, T. Ali, P. M. M. Manohara, and S. Das, "Design techniques of super wideband antenna-existing and future prospective," IEEE Access, Vol. 7, 141241-141257, 2019.
doi:10.1109/ACCESS.2019.2943655

7. Tran, D., P. Aubry, A. Szilagyi, I. E. Lager, O. Yarovyi, and L. P. Ligthart, "On the design of a super wideband antenna," Ultra Wideband, 399-427, Intech Open Limited, London, U.K., 2010.

8. Dong, Y., W. Hong, L. Liu, Y. Zhang, and Z. Kuai, "Performance analysis of a printed super- wideband antenna," Microwave and Optical Technology Letters, Vol. 51, No. 4, 949-956, 2009.
doi:10.1002/mop.24222

9. Chaudhary, A. K. and M. Manohar, "Design and analysis of a compact wideband monopole patch antenna for future handheld gadgets," Progress In Electromagnetics Research C, Vol. 109, 227-241, 2021.
doi:10.2528/PIERC20122403

10. Singhal, S., "Feather-shaped super wideband MIMO antenna," International Journal of Microwave and Wireless Technologies, 1-9, 2020.

11. Dey, S., Md. S.Are n, and N. C. Karmakar, "Design and experimental analysis of a novel compact and exible super wide band antenna for 5G," IEEE Access, Vol. 9, 46698-46708, 2021.
doi:10.1109/ACCESS.2021.3068082

12. Balani, W., M. Sarvagya, A. Samasgikar, T. Ali, and P. Kumar, "Design and analysis of super wideband antenna for microwave applications," Sensors, Vol. 21, No. 2, 477, 2021.
doi:10.3390/s21020477

13. Hasan, Md R., M. A. Riheen, P. Sekhar, and T. Karacolak, "Compact CPW-fed circular patch exible antenna for super-wideband applications," IET Microwaves, Antennas & Propagation, Vol. 14, No. 10, 1069-1073, 2020.
doi:10.1049/iet-map.2020.0155

14. Yu, C., S. Yang, Y. Chen, W. Wang, L. Zhang, B. Li, and L. Wang, "A super-wideband and high isolation MIMO antenna system using a windmill-shaped decoupling structure," IEEE Access, Vol. 8, 115767-115777, 2020.
doi:10.1109/ACCESS.2020.3004396

15. Alluri, S. and N. Rangaswamy, "Compact high bandwidth dimension ratio steering-shaped super wideband antenna for future wireless communication applications," Microwave and Optical Technology Letters, Vol. 62, No. 12, 3985-3991, 2020.
doi:10.1002/mop.32541

16. Elhabchi, M., M. N. Sri , and R. Touahni, "A novel modi ed U-shaped microstrip antenna for Super Wideband (SWB) applications," Analog Integrated Circuits and Signal Processing, 1-8, 2020.

17. Okan, T., "A compact octagonal-ring monopole antenna for super wideband applications," Microwave and Optical Technology Letters, Vol. 62, No. 3, 1237-1244, 2020.
doi:10.1002/mop.32117

18. Singhal, S. and A. K. Singh, "Elliptical monopole based super wideband fractal antenna," Microwave and Optical Technology Letters, Vol. 62, No. 3, 1324-1328, 2020.
doi:10.1002/mop.32143

19. Bhattacharya, A., B. Roy, and A. K. Bhattacharjee, "Compact, isolation enhanced, band- notched SWB-MIMO antenna suited for wireless personal communications," Wireless Personal Communications, 1-18, 2020.

20. Rahman, S. U., Q. Cao, H. Ullah, and H. Khalil, "Compact design of trapezoid shape monopole antenna for SWB application," Microwave and Optical Technology Letters, Vol. 61, No. 8, 1931-1937, 2019.
doi:10.1002/mop.31805

21. Figueroa-Torres, C. A., J. L. Medina-Monroy, H. Lobato-Morales, R. A. Chavez-Perez, and A. Calvillo-Tellez, "A novel fractal antenna based on the Sierpinski structure for super wide-band applications," Microwave and Optical Technology Letters, Vol. 59, No. 5, 1148-1153, 2017.
doi:10.1002/mop.30489

22. Singhal, S. and A. K. Singh, "Asymmetrically CPW-fed circle inscribed hexagonal super wideband fractal antenna," Microwave and Optical Technology Letters, Vol. 58, No. 12, 2794-2799, 2016.
doi:10.1002/mop.30156

23. Manohar, M., R. S. Kshetrimayum, and A. K. Gogoi, "Printed monopole antenna with tapered feed line, feed region, and patch for super wideband applications," IET Microwaves, Antennas & Propagation, Vol. 8, No. 1, 39-45, 2014.
doi:10.1049/iet-map.2013.0094

24. Okas, P., A. Sharma, and R. K. Gangwar, "Circular base loaded modi ed rectangular monopole radiator for super wideband application," Microwave and Optical Technology Letters, Vol. 59, No. 10, 2421-2428, 2017.
doi:10.1002/mop.30757

25. Okas, P., A. Sharma, G. Das, and R. K. Gangwar, "Elliptical slot-loaded partially segmented circular monopole antenna for super wideband application," AEU --- International Journal of Electronics and Communications, Vol. 88, 63-69, 2018.
doi:10.1016/j.aeue.2018.03.004

26. Okas, P., A. Sharma, and R. K. Gangwar, "Super-wideband CPW fed modi ed square monopole antenna with stabilized radiation characteristics," Microwave and Optical Technology Letters, Vol. 60, No. 3, 568-575, 2018.
doi:10.1002/mop.31006

27. Quintero, G., J. F. Zurcher, and A. K. Skrivervik, "System Fidelity factor: A new method for comparing UWB antennas," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 7, 2502-2512, 2011.
doi:10.1109/TAP.2011.2152322

28. Kwon, D.-H., "Effect of antenna gain and group delay variations on pulse-preserving capabilities of ultra-wideband antennas," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 8, 2208-2215, 2006.
doi:10.1109/TAP.2006.879189