Vol. 103
Latest Volume
All Volumes
PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2022-02-22
Compact Broadband 3 × 3 Nolen Matrix with Flat Output Ports Phase Differences
By
Progress In Electromagnetics Research Letters, Vol. 103, 49-56, 2022
Abstract
In the paper, a compact broadband 3×3 Nolen matrix with flatten output ports phase differences is presented. By using two types of three-branch quadrature couplers, wideband impedance matching and flatten output ports amplitudes are obtained. Besides, imbalanced output ports phase differences are compensated by inserting two differential phase shifters between the couplers. Design equations for the proposed structure are derived, and influences of the two differential phase shifters on the phase differences of the Nolen matrix are investigated. To verify the effectiveness of the structure, a prototype operating at 5.8 GHz is fabricated and measured. Measurement results agree well with the simulated ones. Fractional bandwidths (FBWs) of 31.21% and 45.17% are obtained for 15-dB return loss and 15-dB isolation. Moreover, under the criterions of amplitude imbalance < 1 dB and phase difference < 5°, the measured FBWs are more than 23.20% and 23.96%, respectively.
Citation
Hongmei Liu Hongxiao Zhang Da Yu Shao-Jun Fang Zhongbao Wang , "Compact Broadband 3 × 3 Nolen Matrix with Flat Output Ports Phase Differences," Progress In Electromagnetics Research Letters, Vol. 103, 49-56, 2022.
doi:10.2528/PIERL21112201
http://www.jpier.org/PIERL/pier.php?paper=21112201
References

1. Tajik, A. S. and M. Fakharzadeh, "Asymmetrical 4 x 4 Butler matrix and its application for single layer 8 x 8 Butler matrix," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 8, 5372-5379, Aug. 2019.
doi:10.1109/TAP.2019.2916695

2. Liu, H., S. Fang, Z. Wang, and S. Fu, "Design of arbitrary-phase-difference transdirectional coupler and its application to a flexible Butler matrix," IEEE Transactions on Microwave Theory and Techniques, Vol. 67, No. 10, 4175-4185, Oct. 2019.
doi:10.1109/TMTT.2019.2934440

3. Xiang, K., F. Chen, Q. Chu, and M. J. Lancaster, "A broadband 3 x 4 Butler matrix and its application in multibeam antenna arrays," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 12, 7622-7627, Dec. 2019.
doi:10.1109/TAP.2019.2934793

4. Chen, P., W. Hong, Z. Kuai, and J. Xu, "A double layer substrate integrated waveguide Blass matrix for beamforming applications," IEEE Microwave and Wireless Components Letters, Vol. 19, No. 6, 374-376, Jun. 2009.
doi:10.1109/LMWC.2009.2020020

5. Tsokos, et al., "Analysis of a multibeam optical beamforming network based on Blass matrix architecture," Journal of Lightwave Technology, Vol. 36, No. 16, 3354-3372, Aug. 15, 2018.
doi:10.1109/JLT.2018.2841861

6. Fonseca, N. J. G., "Study and design of a s-band 4 x 4 Nolen matrix for satellite digital multimedia broadcasting applications," 2006 12th International Symposium on Antenna Technology and Applied Electromagnetics and Canadian Radio Sciences Conference, 1-4, 2006.

7. Fonseca, N. J. G., "Printed S-band 4 x 4 Nolen matrix for multiple beam antenna applications," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 6, 1673-1678, Jun. 2009.
doi:10.1109/TAP.2009.2019919

8. Djerafi, T., N. J. G. Fonseca, and K. Wu, "Planar Ku-band 4 x 4 Nolen matrix in SIW technology," IEEE Transactions on Microwave Theory and Techniques, Vol. 58, No. 2, 259-266, Feb. 2010.
doi:10.1109/TMTT.2009.2037866

9. Djerafi, T., N. J. G. Fonseca, and K. Wu, "Broadband substrate integrated waveguide 4 x 4 Nolen matrix based on coupler delay compensation," IEEE Transactions on Microwave Theory and Techniques, Vol. 59, No. 7, 1740-1745, Jul. 2011.
doi:10.1109/TMTT.2011.2142320

10. Ren, H., H. Zhang, and B. Arigong, "Ultra-compact 3 x 3 Nolen matrix beamforming network," IET Microw. Antennas Propag., Vol. 14, No. 3, 143-148, Jan. 2020.
doi:10.1049/iet-map.2019.0336

11. Ren, H., H. Zhang, Y. Jin, Y. Gu, and B. Arigong, "A novel 2-D 3 x 3 Nolen matrix for 2-D beamforming applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 67, No. 11, 4622-4631, Nov. 2019.
doi:10.1109/TMTT.2019.2917211

12. Li, P., H. Ren, and B. Arigong, "A symmetric beam-phased array fed by a Nolen matrix using 180 couplers," IEEE Microwave and Wireless Components Letters, Vol. 30, No. 4, 387-390, Apr. 2020.
doi:10.1109/LMWC.2020.2972728

13. Li, P., H. Ren, and B. Arigong, "A uniplanar 3 x 3 Nolen matrix beamformer with beam squint reduction," 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, 515-516, 2020.
doi:10.1109/IEEECONF35879.2020.9330197