Vol. 103
Latest Volume
All Volumes
PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2022-02-14
A W-Band High Isolation Single-Balanced Mixer in GaN HEMT Technology
By
Progress In Electromagnetics Research Letters, Vol. 103, 7-14, 2022
Abstract
A W-band high isolation single-balanced mixer using a 0.1-um GaN high-electron mobility transistor process is proposed in this paper. The diode is biased near the threshold voltage to reduce drive level, and the needed LO power is only 3 dBm. Moreover, the reasonable diode layout and phase compensation structure are used in the proposed mixer to enhance the LO-to-RF isolation. The measured results of the proposed mixer demonstrate a single-sideband conversion loss of 9-10.6 dB and a LO-RF isolation of 40 dB from 75 to 110 GHz with 7 dBm LO power. Moreover, a DC-to-18 GHz IF bandwidth is achieved with the LO frequency fixed at 110 GHz. The 1 dB compression point of the proposed mixer is 11 dBm with 16 dBm LO power. The measurement results indicate that GaN mixer has great potential for W-band transceiver system applications.
Citation
Ping Xiang Weibo Wang Shaobing Wu Hongqi Tao , "A W-Band High Isolation Single-Balanced Mixer in GaN HEMT Technology," Progress In Electromagnetics Research Letters, Vol. 103, 7-14, 2022.
doi:10.2528/PIERL21120703
http://www.jpier.org/PIERL/pier.php?paper=21120703
References

1. Moon, J. S., D. Wong, P. Hashimoto, M. Hu, I. Milosavljevic, P. Willadsen, and C. McGuire, "Sub 1-dB noise figure performance of high-power field-plated GaN HEMTs," IEEE Electron Device Lett., Vol. 32, No. 3, 297-299, 2011.
doi:10.1109/LED.2010.2095408

2. Giacomo, V. D., N. Thouvenin, and C. Gaquiere, "Modelling and design of a wideband 6-18 GHz GaN resistive mixer," Proceedings of the 39th European Microwave Conference, 1812-1815, 2009.

3. Do, M.-N., M. Seelmann-Eggebert, R. Quay, D. Langrez, and J.-L. Cazaux, "AlGaN/GaN mixer MMICs, and RF front-end receivers for C-, Ku-, and Ka-band space applications," Microwave Integrated Circuits Conf. (EuMIC1), 57-60, 2010.

4. Nguyen, S., M. J. Be Zaire, R. O. Hiramoto, T. Lee, and M. Micovic, "Q-band GaN LNA using a 0.15 μm T-gate process," Compound Semiconductor Integrated Circuit Symp., 1-4, Monterey, 2008.

5. Sudow, M., K. Andersson, M. Fagerlind, M. Thorsell, P. A. Nilsson, and N. Rorsman, "A single-ended resistive X-band AlGaN/GaN HEMT MMIC mixer," IEEE Transactions on Microwave Theory and Techniques, Vol. 56, No. 10, 2201-2206, 2008.
doi:10.1109/TMTT.2008.2001958

6. Kang, J., A. Kurdoghlian, A. Margomenos, H. P. Moyer, D. Brown, and C. McGuire, "Ultra-wideband, high-dynamic range, low loss GaN HEMT mixer," Electron. Lett., Vol. 50, No. 4, 295-297, 2014.
doi:10.1049/el.2013.4135

7. Van Heijningen, M., J. A. Hoogland, A. P. de Hek, and F. E. van Vliet, "6-12 GHz double-balanced image-reject mixer MMIC in 0.25 μm AlGaN/GaN technology," Proc. EuMIC, 65-68, 2014.

8. Kurdoghlian, A., H. Moyer, H. Sharifi, D. F. Brown, R. Nagele, and J. Tai, "First demonstration of broadband W-band and D-band GaN MMICs for next generation communication systems," 2017 IEEE MTT-S International Microwave Symposium (IMS), 1126-1128, 2017.
doi:10.1109/MWSYM.2017.8058796

9. De Padova, A., P. E. Longhi, S. Colangeli, W. Ciccognani, and E. Limiti, "Design of a GaN-on-Si single-balanced resistive mixer for Ka-band satcom," IEEE Microwave and Wireless Compon. Lett., Vol. 29, No. 1, 56-58, 2019.
doi:10.1109/LMWC.2018.2880315

10. Xu, L., Z. Wang, and Q. Li, "Design of a monolithic millimeter-wave doubly-balanced mixer in GaAs," Journal of Semiconductors, Vol. 30, No. 8, 2009.

11. Wu, S., J. Gao, W. Wang, and J. Zhang, "W-band MMIC PA with ultrahigh power density in 100-nm AlGaN/GaN technology," IEEE Transations on Electron Devices, Vol. 63, No. 10, 3882-3886, 2016.
doi:10.1109/TED.2016.2597244

12. Hwang, Y.-J., H. Wang, and T.-H. Chu, "A-band subharmonically pumped monolithic GaAs-based HEMT gate mixer," IEEE Microwave and Wireless Compon. Lett., Vol. 14, No. 7, 313-315, 2004.
doi:10.1109/LMWC.2004.829256

13. Barnes, A. R., P. Munday, R. Jennings, and M. T. Moore, "A comparison of -band monolithic resistive mixer architectures," IEEE MTT-S Int. Microw. Symp. Dig., 1867-1870, 2002.

14. Hwang, Y. J., C. H. Lien, H. Wang, M. W. Sinclair, R. G. Gough, H. Kanoniuk, and T. H. Chu, "A 78-114 GHz monolithic subharmonically pumped GaAs-based HEMT diode mixer," IEEE Microw. Wireless Compon. Lett., Vol. 12, No. 6, 209-211, 2002.
doi:10.1109/LMWC.2002.1009997