1. Veselago, V. G., "Electrodynamics of substances with simultaneously negative ε and µ," Usp. Fiz. Nauk, Vol. 92, No. 7, 517-526, 1967.
doi:10.3367/UFNr.0092.196707d.0517
2. Feng, Y. J., et al., "Application of electromagnetic metamaterial in microwave absorbing materials," Progress of Materials in China, Vol. 32, No. 8, 473-479, 2013.
3. Zhang, L., S. Liu, and T. J. Cui, "Theory and applications of electromagnetically encoded metamaterials," China Optical, Vol. 10, No. 1, 1-12, 2017.
doi:10.3788/co.20171001.0001b
4. Wang, G. D., "Design of electromagnetic metamaterial and study of its absorbing properties," Huazhong University of Science and Technology, 2014.
5. Jain, P., et al., "Ultra-thin metamaterial perfect absorbers for single- /dual-/multi-band microwave applications," IET Microwaves, Antennas & Propagation, Vol. 14, No. 5, 390-396, 2020.
doi:10.1049/iet-map.2019.0623
6. Jain, P., et al., "An ultrathin compact polarization-sensitive triple-band microwave metamaterial absorber," Journal of Electronic Materials, Vol. 50, No. 3, 1506-1513, 2021.
doi:10.1007/s11664-020-08680-z
7. Jain, P., et al., "Quad-band polarization sensitive terahertz metamaterial absorber using Gemini-shaped structure," Results in Optics, Vol. 8, 100254, 2022.
doi:10.1016/j.rio.2022.100254
8. Zhou, J., et al., "Unifying approach to left-handed material design," Optics Letters, Vol. 31, No. 24, 3620-3622, 2006.
doi:10.1364/OL.31.003620
9. Bui, S. T., et al., "Small-size metamaterial perfect absorber operating at low frequency," Advances in Natural Sciences: Nanoscience and Nanotechnology, Vol. 5, No. 4, 045008, 2014.
doi:10.1088/2043-6262/5/4/045008
10. Khuyen, B. X., et al., "Miniaturization for ultrathin metamaterial perfect absorber in the VHF band," Scientic Reports, Vol. 7, No. 1, 1-7, 2017.
doi:10.1038/s41598-016-0028-x
11. Zuo, W., et al., "A miniaturized metamaterial absorber for ultrahigh-frequency RFID system," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 329-332, 2016.
12. Li, H., et al., "Ultrathin multiband gigahertz metamaterial absorbers," Journal of Applied Physics, Vol. 110, No. 1, 014909, 2011.
doi:10.1063/1.3608246
13. Yoo, Y. J., et al., "Flexible and elastic metamaterial absorber for low frequency, based on small-size unit cell," Applied Physics Letters, Vol. 105, No. 4, 041902, 2014.
doi:10.1063/1.4885095
14. Ghosh, S., et al., "Triple-band polarization-independent metamaterial absorber using destructive interference," 2015 European Microwave Conference (EuMC), 335-338, IEEE, 2015.
doi:10.1109/EuMC.2015.7345768
15. Bhattacharyya, S., S. Ghosh, and K. V. Srivastava, "An ultra-thin polarization independent metamaterial absorber for triple band applications," 2013 IEEE Applied Electromagnetics Conference (AEMC), 1-2, IEEE, 2013.
16. Shen, X., et al., "Polarization-independent wide-angle triple-band metamaterial absorber," Optics Express, Vol. 19, No. 10, 9401-9407, 2011.
doi:10.1364/OE.19.009401
17. Hu, D., et al., "Optically transparent broadband microwave absorption metamaterial by standing-up closed-ring resonators," Advanced Optical Materials, Vol. 5, No. 13, 1700109, 2017.
doi:10.1002/adom.201700109
18. Amiri, M., et al., "Miniature tri-wideband Sierpinski-Minkowski fractals metamaterial perfect absorber," IET Microwaves, Antennas & Propagation, Vol. 13, No. 7, 991-996, 2019.
doi:10.1049/iet-map.2018.5837
19. Huang, D., et al., "A second-order cross fractal meta-material structure used in low-frequency microwave absorbing materials," Applied Physics A, Vol. 115, No. 2, 627-635, 2014.
doi:10.1007/s00339-014-8374-7
20. Nie, Y., Y. Z. Cheng, and R. Z. Gong, "A low-frequency wideband metamaterial absorber based on a cave-disk resonator and resistive film," Chinese Physics B, Vol. 22, No. 4, 044102, 2013.
doi:10.1088/1674-1056/22/4/044102
21. Singh, A. K., M. P. Abegaonkar, and S. K. Koul, "Dual-and triple-band polarization insensitive ultrathin conformal metamaterial absorbers with wide angular stability," IEEE Transactions on Electromagnetic Compatibility, Vol. 61, No. 3, 878-886, 2018.
doi:10.1109/TEMC.2018.2839881
22. Wang, Y., et al., "Experimental analysis and comparison between cross-shaped metamaterial absorber and its complementary structure," Microwave and Optical Technology Letters, Vol. 61, No. 4, 930-936, 2019.
doi:10.1002/mop.31666
23. Yuan, W. and Y. Cheng, "Low-frequency and broadband metamaterial absorber based on lumped elements: Design, characterization and experiment," Applied Physics A, Vol. 117, No. 4, 1915-1921, 2014.
doi:10.1007/s00339-014-8637-3