Vol. 108
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2022-12-02
Research on Multi-Band Absorbers Based on Electromagnetic Metamaterials
By
Progress In Electromagnetics Research Letters, Vol. 108, 15-23, 2023
Abstract
The rapid development of telecommunication systems has promoted the research of electromagnetic metamaterial absorbers. Based on the equivalent circuit theory, this paper proposes and designs a broadband absorption absorber based on electromagnetic metamaterials, which adopts a sandwich structure with an overall absorber thickness of 3.234 mm. The results show that the absorber has an absorption rate of more than 90% in the X-, Ku-, and K-bands (8.06 GHz-18.46 GHz) for the incident angle varying in the range of 0-50°. The absorption rate is higher than 90% for TE and TM mode electromagnetic waves and electromagnetic waves with polarization angle in the range of 0-50°. The absorber still has good absorption characteristics. The study shows that the absorber has small size, thin thickness, and broad angle broadband absorption characteristics.
Citation
Fugui Liu, Bin Xu, Xiaonan Li, and Guo-Qiang Liu, "Research on Multi-Band Absorbers Based on Electromagnetic Metamaterials," Progress In Electromagnetics Research Letters, Vol. 108, 15-23, 2023.
doi:10.2528/PIERL22100203
References

1. Veselago, V. G., "Electrodynamics of substances with simultaneously negative ε and µ," Usp. Fiz. Nauk, Vol. 92, No. 7, 517-526, 1967.
doi:10.3367/UFNr.0092.196707d.0517

2. Feng, Y. J., B. Zhu, P. H. Xu, et al. "Application of electromagnetic metamaterial in microwave absorbing materials," Progress of Materials in China, Vol. 32, No. 8, 473-479, 2013.

3. Zhang, L., S. Liu, and T. J. Cui, "Theory and applications of electromagnetically encoded metamaterials," China Optical, Vol. 10, No. 1, 1-12, 2017.
doi:10.3788/co.20171001.0001b

4. Wang, G. D., "Design of electromagnetic metamaterial and study of its absorbing properties," Huazhong University of Science and Technology, 2014.

5. Jain, P., A. K. Singh, J. K. Pandey, et al. "Ultra-thin metamaterial perfect absorbers for single- /dual-/multi-band microwave applications," IET Microwaves, Antennas & Propagation, Vol. 14, No. 5, 390-396, 2020.
doi:10.1049/iet-map.2019.0623

6. Jain, P., A. K. Singh, J. K. Pandey, et al. "An ultrathin compact polarization-sensitive triple-band microwave metamaterial absorber," Journal of Electronic Materials, Vol. 50, No. 3, 1506-1513, 2021.
doi:10.1007/s11664-020-08680-z

7. Jain, P., K. Prakash, G. M. Khanal, et al. "Quad-band polarization sensitive terahertz metamaterial absorber using Gemini-shaped structure," Results in Optics, Vol. 8, 100254, 2022.
doi:10.1016/j.rio.2022.100254

8. Zhou, J., E. N. Economon, T. Koschny, et al. "Unifying approach to left-handed material design," Optics Letters, Vol. 31, No. 24, 3620-3622, 2006.
doi:10.1364/OL.31.003620

9. Bui, S. T., Y. J. Yoo, K. W. Kim, et al. "Small-size metamaterial perfect absorber operating at low frequency," Advances in Natural Sciences: Nanoscience and Nanotechnology, Vol. 5, No. 4, 045008, 2014.
doi:10.1088/2043-6262/5/4/045008

10. Khuyen, B. X., B. S. Tung, Y. J. Yoo, et al. "Miniaturization for ultrathin metamaterial perfect absorber in the VHF band," Scienti c Reports, Vol. 7, No. 1, 1-7, 2017.
doi:10.1038/s41598-016-0028-x

11. Zuo, W., Y. Yang, X. He, et al. "A miniaturized metamaterial absorber for ultrahigh-frequency RFID system," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 329-332, 2016.

12. Li, H., L. H. Yuan, B. Zhou, et al. "Ultrathin multiband gigahertz metamaterial absorbers," Journal of Applied Physics, Vol. 110, No. 1, 014909, 2011.
doi:10.1063/1.3608246

13. Yoo, Y. J., H. Y. Zheng, Y. J. Kim, et al. "Flexible and elastic metamaterial absorber for low frequency, based on small-size unit cell," Applied Physics Letters, Vol. 105, No. 4, 041902, 2014.
doi:10.1063/1.4885095

14. Ghosh, S., S. Bhattacharyya, Y. Kaiprath, et al. "Triple-band polarization-independent metamaterial absorber using destructive interference," 2015 European Microwave Conference (EuMC), 335-338, IEEE, 2015.
doi:10.1109/EuMC.2015.7345768

15. Bhattacharyya, S., S. Ghosh, and K. V. Srivastava, "An ultra-thin polarization independent metamaterial absorber for triple band applications," 2013 IEEE Applied Electromagnetics Conference (AEMC), 1-2, IEEE, 2013.

16. Shen, X., T. J. Cui, J. Zhao, et al. "Polarization-independent wide-angle triple-band metamaterial absorber," Optics Express, Vol. 19, No. 10, 9401-9407, 2011.
doi:10.1364/OE.19.009401

17. Hu, D., J. Cao, W. Li, et al. "Optically transparent broadband microwave absorption metamaterial by standing-up closed-ring resonators," Advanced Optical Materials, Vol. 5, No. 13, 1700109, 2017.
doi:10.1002/adom.201700109

18. Amiri, M., F. To gh, N. Shariati, et al. "Miniature tri-wideband Sierpinski-Minkowski fractals metamaterial perfect absorber," IET Microwaves, Antennas & Propagation, Vol. 13, No. 7, 991-996, 2019.
doi:10.1049/iet-map.2018.5837

19. Huang, D., F. Kang, C. Dong, et al. "A second-order cross fractal meta-material structure used in low-frequency microwave absorbing materials," Applied Physics A, Vol. 115, No. 2, 627-635, 2014.
doi:10.1007/s00339-014-8374-7

20. Nie, Y., Y. Z. Cheng, and R. Z. Gong, "A low-frequency wideband metamaterial absorber based on a cave-disk resonator and resistive film," Chinese Physics B, Vol. 22, No. 4, 044102, 2013.
doi:10.1088/1674-1056/22/4/044102

21. Singh, A. K., M. P. Abegaonkar, and S. K. Koul, "Dual-and triple-band polarization insensitive ultrathin conformal metamaterial absorbers with wide angular stability," IEEE Transactions on Electromagnetic Compatibility, Vol. 61, No. 3, 878-886, 2018.
doi:10.1109/TEMC.2018.2839881

22. Wang, Y., L. Wang, J. Song, et al. "Experimental analysis and comparison between cross-shaped metamaterial absorber and its complementary structure," Microwave and Optical Technology Letters, Vol. 61, No. 4, 930-936, 2019.
doi:10.1002/mop.31666

23. Yuan, W. and Y. Cheng, "Low-frequency and broadband metamaterial absorber based on lumped elements: Design, characterization and experiment," Applied Physics A, Vol. 117, No. 4, 1915-1921, 2014.
doi:10.1007/s00339-014-8637-3