Vol. 1
Latest Volume
All Volumes
PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2007-12-10
Electron Subband Structure and Mobility Trends in P-n Delta-Doped Quantum Wells in Si
By
Progress In Electromagnetics Research Letters, Vol. 1, 159-165, 2008
Abstract
We present the electronic spectrum of a n-type deltadoped quantum well in Si coupled to a p-type delta-doped barrier within the envelope function effective mass approximation. We applied the Thomas-Fermi approximation to derive an analytical expression for the confining potential, and thus, we obtain the electronic structure in a simple manner. We analyzed the electron subband structure varying the distance between the doping planes (l) as well as the impurity density in them (n2D, p2D). We also study the mobility trends through an empirical formula that is based on the electron levels, the electron wave functions and the Fermi level. We find a monotonic decrease in the mobility as the p-type barrier moves away from the n-type well, and optimum parameters, l = 70A and n2D = 5 × 1012 cm-2 and p2D = 5×1013 cm-2, for maximum mobility.
Citation
Augusto Ariza-Flores, and Isaac Rodríguez-Vargas, "Electron Subband Structure and Mobility Trends in P-n Delta-Doped Quantum Wells in Si," Progress In Electromagnetics Research Letters, Vol. 1, 159-165, 2008.
doi:10.2528/PIERL07120607
References

1. Huang, D.-H., W.-C. Hsu, Y.-S. Lin, J.-H. Yeh, and J.-C. Huang, "A metamorphic heterostructure field-effect transistor with a double delta-doped channel," Semicond. Sci. Technol., Vol. 22, No. 7, 784-787, 2007.
doi:10.1088/0268-1242/22/7/018

2. Lee, C.-S., C.-H. Chen, J.-C. Huang, and K.-H. Su, "Comparative studies on double δ-doped Al0.3Ga0.7As/InxGa1xAs/GaAs symmetrically graded doped-channel field-effect transistors," J. Electrochem. Soc., Vol. 154, No. 5, H374–H379, 2007.

3. Chu, L.-H., H.-T. Hsu, E.-Y. Chang, T.-L. Lee, S.-H. Chen, Y.-C. Lien, and C.-Y. Chang, "Double δ-doped enhancement-mode InGaP/AlGaAs/InGaAs pseudomorphic high electron mobility transistor for linearity application," Jpn. J. Appl. Phys., Vol. 45, No. 35, L932-L934, 2006.
doi:10.1143/JJAP.45.L932

4. Lee, C.-Y., H.-P. Shiao, K.-C. Kuo, H.-Y. Wu, and W.-H. Lin, "Mobility and charge density tuning in double δ-doped pseudomorphic high-electron-mobility transistors grown by metal organic chemical vapor deposition," J. Vac. Sci. Technol. B, Vol. 24, No. 6, 2597-2600, 2006.
doi:10.1116/1.2362783

5. Lin, Y.-S., D.-H. Huang, W.-C. Hsu, T. B. Wang, K. H. Su, J.-C. Huang, and C. H. Ho, "Improved InAlGaP-based heterostructure field-effect transistors," Semicond. Sci. Technol., Vol. 21, No. 4, 540-543, 2006.
doi:10.1088/0268-1242/21/4/021

6. Kalna, K., Q. Wang, M. Passlack, and A. Asenov, "Monte Carlo simulations of δ-doping placement in sub-100nm implant free InGaAs MOSFETs," Mater. Sci. Eng. B, Vol. 135, No. 3, 285-288, 2006.
doi:10.1016/j.mseb.2006.08.019

7. Saidi, I., L. Bouzaiene, M. H. Gazzah, H. Mejri, and H. Maaref, "Back doping design in delta-doped AlGaN/GaN heterostructure field-effect transistors," Solid State Commun., Vol. 140, No. 6, 308-312, 2006.
doi:10.1016/j.ssc.2006.08.026

8. Gossmann, H.-J. and F. C. Unterwald, "Dopant electrical activity and majority-carrier mobility in B- and Sb-δ-doped Si thin films," Phys. Rev. B, Vol. 47, No. 19, 12618-12624, 1993.
doi:10.1103/PhysRevB.47.12618

9. Zudov, M. A., C. L. Yang, R. R. Du, T.-C. Shen, J.-Y. Ji, J. S. Kline, and J. R. Tucker, "Weak localization in ultradense 2D electron gas in δ-doped silicon," Cond-mat/0305482, (unpublished).

10. Goh, K. E. J., L. Oberbeck, M. Y. Simmons, A. R. Hamilton, and M. J. Butcher, "Influence of doping density on electronic transport in degenerate Si: P δ-doped layers," Phys. Rev. B, Vol. 73, No. 3, 035401, 2006.

11. Ando, T., A. B. Fowler, and F. Stern, "Electronic properties of two-dimensional systems," Rev. Mod. Phys., Vol. 54, No. 2, 437-672, 1982.
doi:10.1103/RevModPhys.54.437

12. Rodriguez-Vargas, I. and L. M. Gaggero-Sager, "Subband and transport calculations in double n-type δ-doped quantum wells in Si," J. Appl. Phys., Vol. 99, No. 3, 033702, 2006.

13. Gurtovoi, V. L., V. V. Valyaev, S. Yu Shapoval, and A. N. Pustovit, "Electron transport properties of double deltadoped GaAs structures grown by low-pressure metalorganic chemical vapor deposition," Appl. Phys. Lett., Vol. 72, No. 10, 1202-1204, 1998.
doi:10.1063/1.121013

14. Rodriguez-Vargas, I., L. M. Gaggero-Sager, and V. R. Velasco, "Thomas-Fermi-Dirac theory of the hole gas of a double p-type δ-doped GaAs quantum wells," Surf. Sci., Vol. 537, No. 1, 75-83, 2003.
doi:10.1016/S0039-6028(03)00546-6