Vol. 6
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2009-02-06
Back Radiation Reduction in Patch Antennas Using Planar Soft Surfaces
By
Progress In Electromagnetics Research Letters, Vol. 6, 123-130, 2009
Abstract
In this work, we propose to use a type of periodic structures, the soft surfaces in their planar version, to reduce the back radiation of patch antennas. A key aspect of these surfaces when compared to other periodic structures is their anisotropy which provides different behaviour for different field polarization (horizontal or vertical). This make them especially convenient for this application, as the soft surfaces force the field intensity for any polarization to be zero on the surface for waves propagating along the surface. In this paper, a design example is presented and the back radiation reduction by using planar soft surfaces is demonstrated.
Citation
Eva Rajo-Iglesias, Luis Inclán-Sánchez, and Oscar Quevedo-Teruel, "Back Radiation Reduction in Patch Antennas Using Planar Soft Surfaces," Progress In Electromagnetics Research Letters, Vol. 6, 123-130, 2009.
doi:10.2528/PIERL08111202
References

1. Shaban, H., H. Elmikaty, and A. A. Shaalan, "Study the effects of electromagnetic band-gap (EBG) substrate on two patch microstrip antenna," Progress In Electromagnetics Research B, Vol. 10, 55-74, Editorial Guest, 2008.
doi:10.2528/PIERB08081901

2. Kildal, P.-S., "Artificially soft and hard surfaces in electromagnetics," IEEE Trans. on Antennas and Propagation, Vol. 28, No. 10, 1537-1544, 1990.
doi:10.1109/8.59765

3. Rajo-Iglesias, E., M. Caiazzo, L. Inclán-Sánchez, and P.-S. Kildal, "Comparison of bandgaps of mushroom-type EBG surface and corrugated and strip-type soft surfaces," IET Microwaves, Antennas and Propagation, Vol. 1, 184-189, 2007.
doi:10.1049/iet-map:20050327

4. Kildal, P.-S., A. A. Kishk, and S. Maci, "Special issue on artificial magnetic conductors, soft/hard surfaces, and other complex surfaces," IEEE Trans. on Antennas and Propagation, Vol. 53, No. 1, 2-7, 2005.
doi:10.1109/TAP.2004.841530

5. Rajo-Iglesias, E., L. Inclán-Sánchez, and P.-S. Kildal, "Comparison of bandwidths of mushroom-type EBG surfaces and corrugated and strip-type soft surfaces when used as narrow ground planes," IET Microwaves, Antennas and Propagation, Vol. 2, No. 3, 248-258, 2008.
doi:10.1049/iet-map:20070157

6. Kildal, P.-S. and A. Kishk, "EM modeling of surfaces with stop or go characteristics artificial magnetic conductors and soft and hard surfaces," Applied Computational Electromagnetics Society Journal, Vol. 18, No. 1, 2003.

7. RongLin, L., G. DeJean, M. M. Tentzeris, J. Papapolymerou, and J. Laskar, "Radiation-pattern improvement of patch antennas on a large-size substrate using a compact soft-surface structure and its realization on LTCC multilayer technology," IEEE Trans. on Antennas and Propagation, Vol. 53, No. 1, 200-208, 2005.
doi:10.1109/TAP.2004.840754

8. Ying, Z. and P.-S. Kildal, "Improvements of dipole, helix, spiral, microstrip patch and aperture antennas with ground planes by using corrugated soft surfaces," IEE Proceedings Microwaves, Antennas and Propagation, Vol. 143, No. 3, 244-248, 1996.
doi:10.1049/ip-map:19960385

9. Mahmoud, S. F. and A. R. Al-Ajmi, "A novel microstrip patch antenna with reduced surface wave excitation," Progress In Electromagnetics Research, Vol. 86, 71-86, 2008.
doi:10.2528/PIER08092403

10. Sievenpiper, D., L. Zhang, R. F. J Broas, N. G. Alexopolus, and E. Yablonovitch, "High impedance electromagnetic surfaces with a forbidden frequency band," IEEE Transaction on Microwave Theoryand Technique, Vol. 47, No. 11, 2059-2074, 1999.
doi:10.1109/22.798001

11. Boutayeb, H. and T. A. Denidni, "Gain enhancement of a microstrip patch antenna using a cylindrical electromagnetic crystal substrate," IEEE Trans. on Antennas and Propagation, Vol. 55, No. 11, 3140-3145, 2007.
doi:10.1109/TAP.2007.908818