Vol. 9
Latest Volume
All Volumes
PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2009-06-19
New Approach to Design Digitally Tunable Optical Filter System for Wavelength Selective Switching Based Optical Networks
By
Progress In Electromagnetics Research Letters, Vol. 9, 93-100, 2009
Abstract
A new approach to design digitally tunable optical filter system by using semiconductor optical amplifiers (SOAs) and Dense Wavelength Division Multiplexed (D.W.D.M.) thin film filter based wavelength selection elements is presented. The system designed with this approach is very easy to configure and expand, smaller in size, lesser in weight, cheaper in cost and consuming less power as compared to design suggested by other researchers recently.
Citation
Anirudh Banerjee, "New Approach to Design Digitally Tunable Optical Filter System for Wavelength Selective Switching Based Optical Networks," Progress In Electromagnetics Research Letters, Vol. 9, 93-100, 2009.
doi:10.2528/PIERL09050303
References

1. Brooks, D. and S. Ruschin, "Integrated electro-optic multielectrode tunable filter," J. Lightwave Tech., Vol. 13, 1508-1513, 1995.
doi:10.1109/50.400719

2. Wooten, E. L., R. L. Stone, E. W. Miles, and E. M. Bradely, "Rapidly tunable narrowband wavelength filter using LiNbO3 unbalanced Mach-Zehnder interferometers," J. Lightwave Tech., Vol. 14, 2530-2536, 1996.
doi:10.1109/50.548151

3. Oda, K., N. Yakato, T. Kominato, and H. Toba, "A 16-channel frequency selection switch for optical FDM distribution systems," IEEE Journal on Selected Areas in Communications, Vol. 8, 1132-1140, 1990.
doi:10.1109/49.57818

4. Stone, J. and L. W. Stulz, "High-performance fiber Fabry-Perot filters," Electron. Lett., Vol. 27, 2239-2240, 1991.
doi:10.1049/el:19911385

5. Born, M. and E.Wolf, Principles of Optics, 6 Ed., Pergamon, New York, 1980.

6. Zirngibl, M., C. H. Joyner, and B. Glance, "Digitally tunable channel dropping filter/equalizer based on wave guide grating router and optical amplifier integration," IEEE Photonics Technology Letters, Vol. 6, 513-515, 1994.
doi:10.1109/68.281812

7. Ishida, O., H. Takahashi, and Y. Inoue, "Digitally tunable optical filters using arrayed wave guide grating (AWG) multiplexers and optical switches," J. Lightwave Tech., Vol. 15, 321-327, 1997.
doi:10.1109/50.554384

8. Sneh, A. and K. M. Johnson, "High-speed tunable liquid crystal filter for WDM networks," J. Lightwave Tech., Vol. 14, 1067-1080, 1996.
doi:10.1109/50.511608

9. Chen, P. L., K. C. Lin, W. C. Chuang, Y. C. Tzeng, K. Y. Lee, and W. Y. Lee, "Analysis of a liquid crystal Fabry-Perot etalon filter: A novel model," IEEE Photonics Technology Letters, Vol. 9, 467-469, 1997.
doi:10.1109/68.559390

10. Fujii, Y., "High-isolation polarization-independent optical circulator coupled with singlemode fibers," J. Lightwave Tech., Vol. 9, 456-460, 1991.
doi:10.1109/50.76659

11. Smith, D. A., J. E. Baran, J. J. Johnson, and K. W. Cheung, "Integrated-optic acoustically tunable filters for WDM networks," IEEE Journal on Selected Areas in Communications, Vol. 8, 1151-1159, 1990.
doi:10.1109/49.57821

12. Kim, C.-S., F. N. Farokhrooz, and J. U. Kang, "Electro-optic wavelength-tunable fiber ring laser based on cascaded composite Sagnac loop filters," Opt. Lett., Vol. 29, 1677-1679, 2004.
doi:10.1364/OL.29.001677

13. Li, X., J. Chen, G. Wu, and A. Ye, "Digitally tunable optical filter based on DWDM thin film filters and semiconductor optical amplifiers," Optics Express, Vol. 13, 1346-1350, 2005.
doi:10.1364/OPEX.13.001346