Vol. 10
Latest Volume
All Volumes
PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2009-07-27
Topological Solitons in 1+2 Dimensions with Time-Dependent Coefficients
By
Progress In Electromagnetics Research Letters, Vol. 10, 69-75, 2009
Abstract
This paper obtains the topological 1-soliton solution of the nonlinear Schrodinger's equation in 1+2 dimensions, with power law nonlinearity and time-dependent coefficients. The solitary wave ansatz is used to obtain the solution. It will also be proved that the power law nonlinearity must reduce to Kerr law nonlinearity for the topological solitons to exist.
Citation
Benjamin Sturdevant, Dawn A. Lott, and Anjan Biswas, "Topological Solitons in 1+2 Dimensions with Time-Dependent Coefficients," Progress In Electromagnetics Research Letters, Vol. 10, 69-75, 2009.
doi:10.2528/PIERL09070804
References

1. Ablowitz, M. J. and H. Segur, Solitons and the Inverse Scattering Transform, SIAM, Philadelphia, PA, 1981.

2. Biswas, A., "Topological 1-soliton solution of the nonlinear Schrödinger's equation with Kerr law nonlinearity in 1+2 dimensions," Communications in Nonlinear Science and Numerical Simulation, Vol. 14, No. 7, 2845-2847, 2009.
doi:10.1016/j.cnsns.2008.09.025

3. Escudero, C., "Blow-up of the hyperbolic Burger's equation," Journal of Statistical Physics, Vol. 127, No. 2, 327-338, 2007.
doi:10.1007/s10955-006-9276-7

4. Jordan, P. M., "Growth and decay of shock and accleration waves in a traffic flow model with relaxation," Physical D, Vol. 207, No. 3--4, 220-229, 2005.
doi:10.1016/j.physd.2005.06.002

5. Khalique, C. M. and A. Biswas, "Optical solitons with parabolic and dual-power law nonlinearity via lie symmetry analysis," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 7, 963-973, 2009.
doi:10.1163/156939309788355270

6. Konar, S., S. Jana, and S. Shwetanshumala, "Incoherently coupled screening photovoltaic spatial solitons in biased photovoltaic photorefractive crystals," Optics Communications, Vol. 273, No. 2, 324-333, 2007.
doi:10.1016/j.optcom.2007.01.051

7. Konar, S., S. Jana, and M. Mishra, "Induced focussing and all optical switching in cubic-quintic nonlinear media," Optics Communications, Vol. 255, No. 1--3, 114-129, 2005.
doi:10.1016/j.optcom.2005.05.038

8. Kudryashov, N. A. and N. B. Loguinova, "Be careful with expfunction method," Communications in Nonlinear Science and Numerical Simulation, Vol. 14, No. 5, 1881-1890, 2009.
doi:10.1016/j.cnsns.2008.07.021

9. Kudryashov, N. A., "Seven common errors in finding exact solutions of nonlinear differential equations," Communications in Nonlinear Science and Numerical Simulation, Vol. 14, No. 9--10, 3507-3529, 2009.
doi:10.1016/j.cnsns.2009.01.023

10. Lott, D. A., A. Henriquez, B. J. M. Sturdevant, and A. Biswas, "A numerical study of optical soliton-like structures resulting from the nonlinear Schrödinger's equation with square-root law nonlinearity," Applied Mathematics and Computation, Vol. 207, No. 2, 319-326, 2009.
doi:10.1016/j.amc.2008.10.038

11. Makarenko, A. S., M. N. Moskalkov, and S. P. Levkov, "On blow-up solutions in turbulence," Physics Letters A, Vol. 235, No. 4, 391-397, 1997.
doi:10.1016/S0375-9601(97)00667-1

12. Sturdevant, B. J. M., D. A. Lott, and A. Biswas, "Dynamics of topological optical solitons with time-dependent dispersion, nonlinearity and attenuation," Communications in Nonlinear Science and Numerical Simulation, Vol. 14, No. 8, 3305-3308, 2009.
doi:10.1016/j.cnsns.2008.12.014

13. Sulem, C. and P. Sulem, The Nonlinear SchrÄodinger's Equation, Springer Verlag, New York, NY, 1999.

14. Wazwaz, A. M., "Reliable analysis for nonlinear Schrödinger equations with a cubic nonlinearity and a power law nonlinearity," Mathematical and Computer Modelling, Vol. 43, No. 1--2, 178-184, 2006.
doi:10.1016/j.mcm.2005.06.013

15. Wazwaz, A. M., "A study on linear and nonlinear Schrödinger equations by the variational iteration method," Chaos, Solitons & Fractals, Vol. 37, No. 4, 1136-1142, 2008.
doi:10.1016/j.chaos.2006.10.009