Vol. 10
Latest Volume
All Volumes
PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2009-08-21
Optimization of Three-Dimentional (3-d ) Ground Structure for Improved Circularly Polarized Microstrip Antenna Beamwidth
By
Progress In Electromagnetics Research Letters, Vol. 10, 135-143, 2009
Abstract
A novel circularly polarised (CP), single-fed widebeam microstrip antenna is presented. The antenna consists of a corner-truncated square patch and a three dimensional circular ground structure. Simulated and measured results show that, owing to the ground structure, the 3 dB beamwidth of the CP radiation can reach more than 165o, which is about 85o, greater than that of a corresponding regular microstrip antenna. It is also shown that experimental results were in good agreement with the simulated performance. Details of the proposed 3-D circular ground structure are described, and the effects of various dimensions of the proposed ground structure on the beamwidth enhancement of CP radiation are studied.
Citation
You-Huo Huang, Shi-Gang Zhou, Jie Ma, and Qi-Zhong Liu, "Optimization of Three-Dimentional (3-d ) Ground Structure for Improved Circularly Polarized Microstrip Antenna Beamwidth," Progress In Electromagnetics Research Letters, Vol. 10, 135-143, 2009.
doi:10.2528/PIERL09071103
References

1. Huang, J., "The finite ground plane effect on the microstrip antenna radiation patterns," IEEE Trans. Antennas Propagat., Vol. 31, 649-653, 1983.
doi:10.1109/TAP.1983.1143108

2. Liu, W. C. and P. C. Kao, "Design of a probe-fed H-shaped microstrip antenna for circular polarization," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 7, 857-864, 2007.
doi:10.1163/156939307780748986

3. Kishk, A. A., L. Shafai, and , "The effect of various parameters of circular microstrip antennas on their radiation efficiency and the mode excitation," IEEE Trans. Antennas Propagat., Vol. 34, 969-976, 1986.
doi:10.1109/TAP.1986.1143939

4. Bhattacharyya, A. K., "Effects of finite ground plane on the radiation characteristics of a circular patch antenna," IEEE Trans. Antennas Propagat., Vol. 38, 152-159, 1990.
doi:10.1109/8.45116

5. Han, T. Y. and C. Y. D. Sim, "Probe-feed circularly polarized square-ring microstrip antennas with thick substrate," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 1, 71-80, 2007.
doi:10.1163/156939307779391803

6. Bhattacharyya, A. K., "Effects of ground plane and dielectric truncations on the efficiency of a printed structure," IEEE Trans. Antennas Propagat., Vol. 39, 303-308, 1991.
doi:10.1109/8.76326

7. Yang, S. S., K.-F. Leee, A. A. Kishk, and K.-M. Luk, "Design and study of wideband single feed circularly polarized microstrip antennas," Progress In Electromagnetics Research, Vol. 80, 45-61, 2008.
doi:10.2528/PIER07110604

8. Bokhari, S. A., J. R. Mosig, and F. E. Gardiol, "Radiation pattern computation of microstrip antennas on finite size ground plane," Proc. Inst. Elect. Eng., Vol. 139, 278-286, 1992.

9. Sanad, M., "Microstrip antennas on very small ground planes for portable communication systems," IEEE Antennas Propagat. Soc. Int. Symp. Dig., 810-813, 1994.

10. Bauer, R., E. Levine, H. Matzner, and S. Strikman, "Analysis of a microstrip disk antenna with a finite ground plane," Electromag., Vol. 15, 485-497, 1995.
doi:10.1080/02726349508908437

11. Noghanian, S. and L. Shafai, "Control of microstrip antenna radiation characteristics by ground plane size and shape," Proc. Inst. Elect. Eng., Vol. 145, 207-212, 1998.

12. Tang, C.-L., J.-Y. Chiou, and K.-L. Wong, "Beamwidth enhance ment of a circularly polarized antenna on a three-dimensional ground structrue," Microwave and Optical Technolagy Letters, Vol. 32, No. 2, 149-153, 2002.
doi:10.1002/mop.10116