Vol. 16
Latest Volume
All Volumes
PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2010-08-01
The Miniature Frequency Doubler Using Compensated Capacitive Line in Balun
By
Progress In Electromagnetics Research Letters, Vol. 16, 99-108, 2010
Abstract
A compact balanced frequency MMIC doubler using compensated capacitive line in Marchand balun is proposed. With multi-coupled lines technology, the balun is applied to a balanced doubler successfully. Compared with the conventional Marchand balun, more than 55% reduction in the length of coupled line can be achieved. Implemented by a PHEMT process, the compact monolithic balanced frequency doubler with better performance can be obtained. An operation bandwidth from 20 to 44 GHz with the best conversion loss of 8.4 dB at 25GHz can be achieved. In addition, the fundamental frequency suppression is better than 28.9 dB, and the chip dimension is as small as 0.41 × 0.68 mm2.
Citation
Yu-Ann Lai, Chun-Nien Chen, Chun-Chi Su, Chih-Ming Lin, and Yeong-Her Wang, "The Miniature Frequency Doubler Using Compensated Capacitive Line in Balun," Progress In Electromagnetics Research Letters, Vol. 16, 99-108, 2010.
doi:10.2528/PIERL10060403
References

1. Faber, M. T., J. Chramiec, and M. E. Adamski, Microwave and Millimeter-wave Diode Frequency Multipliers, Artech House, Boston, MA, 1995.

2. Lin, C. M., C. C. Su, S. H. Hung, and Y. H. Wang, "A compact balun based on microstrip EBG cell and interdigital capacitor," Progress In Electromagnetics Research Letters, Vol. 12, 111-118, 2009.
doi:10.2528/PIERL09092904

3. Lin, C. S., P. S. Wu, M. C. Yeh, J. S. Fu, H. Y. Chang, K. Y. Lin, and H. Wang, "Analysis of multiconductor coupled-line Marchand baluns for miniature MMIC design," IEEE Trans. Microw. Theory Tech., Vol. 55, No. 6, 1190-1199, Jun. 2007.
doi:10.1109/TMTT.2007.897689

4. Maas, S. A. and Y. Ryu, "A broadband, planar, monolithic resistive frequency doubler," IEEE MTT-S Int. Dig., 443-446, 1994.

5. Piernas, B., H. Hayashi, K. Nishikawa, K Kamogawa, and T. Nakagawa, "A broadband and miniatures V-band PHEMT frequency doubler," IEEE Microw. Guided Wave Lett., Vol. 10, 276-278, Jul. 2000.

6. Campos-Roca, Y., L. Verweyen, M. Fernandez-Barciela, W. Bischof, M. C. Curras-Francos, E. Sanchez, A. Hulsmann, and M. Schlechtweg, "38/76 GHz PHEMT MMIC balance frequency doublers in coplanar technology," IEEE Microw. Guided Wave Lett., Vol. 10, No. 11, 484-487, Nov. 2000.

7. Nishikawa, K., B. Piernas, T. Nakagawa, and K. Araki, "Miniaturized and broadband V-band balanced frequency doubler for highly integrated 3-D MMIC," IEEE MTT-S Int. Dig., Vol. 1, 351-354, Jun. 2002.

8. Marchand, N., "Transmission line conversion transformers," Electronics, Vol. 17, No. 12, 142-145, Dec. 1944.

9. Liu, Z. and R. M. Weikle, "A 180°hybrid based on interdigitally coupled asymmetrical artificial transmission lines," IEEE MTT-S Int. Microw. Symp. Dig., 1555-1558, Jun. 2006.
doi:10.1109/MWSYM.2006.249611

10. Fujii, T. and I. Ohta, "Size-reduction of coupled-microstrip 3 dB forward couplers by loading with periodic shunt capacitive stubs," IEEE MTT-S Int. Microw. Symp. Dig., 1235-1238, Jun. 2005.
doi:10.1109/MWSYM.2005.1516900

11. Mongia, R., I. Bahl, and P. Bharti, RF and Microwave Coupled-line Circuits, Artech House, Norwood, MA, 1999.

12. Weng, C. C., Z. M. Tsai, and H. Wang, "A K-band miniature, broadband, high output power HBT MMIC balanced doubler with integrated balun," IEEE Euro. Microw. Conf. Dig., Vol. 3, 1-3, Oct. 2005.