Vol. 18
Latest Volume
All Volumes
PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2010-10-21
Nucleation and Growth Behaviors of Primary Phase in Al-Cu Hypereutectic Alloy in High Magnetic Fields
By
Progress In Electromagnetics Research Letters, Vol. 18, 71-84, 2010
Abstract
The nucleation and growth of primary Al2Cu phase in the Al-34.3wt%Cu hypereutectic alloy without and with a 12 T magnetic fields have been investigated by differential thermal analysis (DTA). The DTA curves indicated that the nucleation temperature of primary phase was significantly reduced in a magnetic field. The X-ray diffraction (XRD) patterns confirmed that the c-axes of primary Al2Cu crystals oriented along the direction parallel to a magnetic field. The microstructures showed that primary crystals aligned along a magnetic field and that their number distinctly increased with increasing a magnetic field as well. The suppression of nucleation in a magnetic could be caused by the increase of the interfacial energy between the liquid and nucleus and the reduction of atom diffusion rates while the orientation of primary crystals were mainly attributed to both of the magnetic toque and the thermoelectric magnetohydrodynamic (TEMHD) flows.
Citation
Chuanjun Li, Zhongming Ren, Weili Ren, Yuqin Wu, Yunbo Zhong, and Kang Deng, "Nucleation and Growth Behaviors of Primary Phase in Al-Cu Hypereutectic Alloy in High Magnetic Fields," Progress In Electromagnetics Research Letters, Vol. 18, 71-84, 2010.
doi:10.2528/PIERL10061301
References

1. Goetz, A., "On mechanical and magnetic factors influencing the orientation and perfection of bismuth single-crystals," Physical Review, Vol. 35, 193-207, 1930.
doi:10.1103/PhysRev.35.193

2. Mikelson, A. E. and Y. K. Karklin, "Control of crystallization processes by magnetic fields," Journal of Crystal Growth, Vol. 52, 524-529, 1981.
doi:10.1016/0022-0248(81)90333-X

3. Savitsky, E. M., R. S. Torchinova, and S. A. Turanov, "Effect of crystallization in magnetic field on the structure and magnetic properties of Bi-Mn alloys," Journal of Crystal Growth, Vol. 52, 519-523, 1981.
doi:10.1016/0022-0248(81)90332-8

4. De Rango, P., M. Lees, P. Lejay, A. Sulpice, R. Tournier, M. Ingold, P. Germi, and M. Pernet, "Texturing of magneticmaterials at high temperature by solidification in a magnetic field," Nature, Vol. 349, 770-772, 1991.
doi:10.1038/349770a0

5. Liu, H. B., P. J. Ferreira, and J. B. Vander Sande, "Processing bi-2212/ag thick films under a high magnetic field: On the bi-2212/ag interface effect," Physica C: Superconductivity, Vol. 303, 161-168, 1998.
doi:10.1016/S0921-4534(98)00250-0

6. Gaucherand, F. and E. Beaugnon, "Magnetic texturing in ferromagnetic cobalt alloys," Physica B, Vol. 346-347, 262-266, 2004.
doi:10.1016/j.physb.2004.01.062

7. Lee, K. H., J. M. Cho, and W. Sigmund, "Control of growth orientation for carbon nanotubes," Applied Physical Letters, Vol. 82, 448-450, 2003.
doi:10.1063/1.1535269

8. Torbet, J., J. M. Freyssinet, and G. Hudry-Clergeon, "Oriented fibrin gels formed by polymerization in strong magnetic fields," Nature, Vol. 289, 91-93, 1981.
doi:10.1038/289091a0

9. Tournier, R. F. and E. Beaugnon, "Texturing by cooling a metallic melt in a magnetic field," Science and Technology of Advanced Materials, Vol. 10, 014501, 2009.
doi:10.1088/1468-6996/10/1/014501

10. Tournier, R. F, "Presence of intrinsic growth nuclei in overheated and undercooled liquid elements," Physica B, Vol. 392, 79-91, 2007.
doi:10.1016/j.physb.2006.11.002

11. Li, C. J., Z. M. Ren, K. Deng, G. H. Cao, Y. B. Zhong, and Y. Q. Wu, "Design and application of differential thermal analysis apparatus in high magnetic fields," Review of Scientific Instruments, Vol. 80, 073907, 2009.
doi:10.1063/1.3186058

12. Porter, D. A. and K. E. Easterling, Phase Transformations in Metals and Alloys, 2 Ed., Chapman & Hall, London, 1992.

13. Magomedov, M. N., "On the magnetic-field-induced changes in the parameters of phase transitions," Technical Physics Letters, Vol. 28, 116-118, 2002.
doi:10.1134/1.1458508

14. Turnbull, D., "Formation of crystal nuclei in liquid metals," Journal of Applied Physics, Vol. 21, 1022-1028, 1950.
doi:10.1063/1.1699435

15. Fujimura, Y. and M. Lino, "The surface tension of water under high magnetic fields," Journal of Applied Physics, Vol. 103, 124903-4, 2008.
doi:10.1063/1.2940128

16. Li, C. J., H. Yang, Z. M. Ren, W. L. Ren, and Y. Q. Wu, "On nucleation temperature of pure aluminum in magnetic fields," Progress In Electromagnetics Research Letters, Vol. 15, 45-52, 2010.
doi:10.2528/PIERL10041412

17. Spaepen, F., "Interfaces and stresses in thin films," Acta Materialia, Vol. 48, 31-42, 2000.
doi:10.1016/S1359-6454(99)00286-4

18. Turnbull, D. and J. C. Fisher, "Rate of nucleation in condensed systems," Journal of Chemical Physics, Vol. 17, 71-73, 1949.
doi:10.1063/1.1747055

19. Botton, V., P. Lehmann, R. Bolcato, R. Moreau, and R. Haettel, "Measurement of solute diffusivities. Part II. Experimental measurements in a convection-controlled shear cell. Interest of a uniform magnetic field," International Journal of Heat and Mass Transfer, Vol. 44, 3345-3357, 2001.
doi:10.1016/S0017-9310(00)00362-8

20. Miyake, T., Y. Inatomi, and K. Kuribayashi, "Measurement of diffusion coefficient in liquid metal under static magnetic field," Japan Journal of Applied Physics, Vol. 41, L811-L813, 2002.
doi:10.1143/JJAP.41.L811

21. Youdelis, W. V., D. R. Colton, and J. Cahoon, "On the theory of diffusion in a magnetic field," Canadian Journal of Physics, Vol. 42, No. 11, 2238-2258, 1964.
doi:10.1139/p64-205

22. Ferreira, P. J., H. B. Liu, and J. B. Vander Sande, "A model for the texture development of high-Tc surperconductors under an elevated magnetic field," Journal of Materials Research, Vol. 14, 2751-2763, 1999.
doi:10.1557/JMR.1999.0368

23. Asai, S., K. Sassa, and M. Tahashi, "Crystal orientation of non-magnetic materials by imposition of a high magnetic field," Science and Technology of Advanced Materials, Vol. 4, 455-460, 2003.
doi:10.1016/j.stam.2003.07.001

24. Sugiyama, T., M. Tahashi, K. Sassa, and S. Asai, "The control of crystal orientation in non-magnetic metals by imposition of a magnetic field," ISIJ International, Vol. 43, 855-861, 2003.
doi:10.2355/isijinternational.43.855

25. Nakagawa, Y., "An experiment on the inhibition of thermal convection by a magnetic field," Nature, Vol. 175, 417-419, 1955.
doi:10.1038/175417b0

26. Oreper, G. M. and J. Szekely, "The effect of an externally imposed magnetic field on buoyancy driven flow in a rectangular cavity," Journal of Crystal Growth, Vol. 64, 505-515, 1983.
doi:10.1016/0022-0248(83)90335-4

27. Lehmann, P., R. Moreau, D. Camel, and R. Bolcato, "Modification of interdendritic convection in directional solidification by a uniform magnetic field," Acta Materialia, Vol. 46, 4067-4079, 1998.
doi:10.1016/S1359-6454(98)00064-0

28. Moreau, R., O. Laskar, M. Tanaka, and D. Camel, "Thermoelectric magnetohydrodynamic effects on solidification of metallic alloys in the dendritic regime," Materials Science and Engineering A, Vol. 173, 93-100, 1993.
doi:10.1016/0921-5093(93)90194-J

29. Gorbunov, L. A., "Effect of thermoelectromagnetic convection on the production of bulk single crystals consisting of semiconductor melts in a constant magnetic field," Magnetohydrodynamics, Vol. 23, 404-408, 1988.

30. Li, X., Y. Fautrelle, and Z. M. Ren, "Influence of thermoelectric effects on the solid-liquid interface shape and cellular morphology in the mushy zone during the directional solidification of Al-Cu alloys under a magnetic field," Acta Materialia, Vol. 55, 3803-3813, 2007.
doi:10.1016/j.actamat.2007.02.031

31. Shercliff, J. A., "Thermoelectric magnetohydrodynamics," Journal of Fluid Mechanics, Vol. 91, 231-251, 1979.
doi:10.1017/S0022112079000136

32. Bretonnet, J. L., J. Auchet, and J. G. Gasser, "Electrical transport properties of the liquid Al-Cu alloys," Journal of Non-Crystalline Solids, Vol. 117-118, 395-398, 1990.
doi:10.1016/0022-3093(90)90961-K