Vol. 18
Latest Volume
All Volumes
PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2010-09-29
Wideband SSN Suppression in High-Speed PCB Using Novel Planar EBG
By
Progress In Electromagnetics Research Letters, Vol. 18, 29-39, 2010
Abstract
Simultaneous switching noise (SSN) is a significant problem in high-speed circuits. To minimize its effect and improve the electrical characteristics of circuits such as signal integrity (SI) and power integrity (PI), a novel power plane with planar electromagnetic bandgap (EBG) structure is proposed for SSN suppression in printed circuit boards (PCB) in this paper. In which a kind of improved long bridge is used and the equivalent parallel inductance can be increased significantly. Compared to the typical spiral bridge EBG structure with the same parameters, the long bridge EBG structure will change bandgap into dual-band, with lower center frequency and wider bandwith. The effectiveness and accuracy of this structure are verified by both simulations and measurements.
Citation
Hui-Sen He, Xin-Quan Lai, Qiang Ye, Qiang Wang, Wen-Dan Xu, Jian-Guo Jiang, and Ming-Xiang Zang, "Wideband SSN Suppression in High-Speed PCB Using Novel Planar EBG," Progress In Electromagnetics Research Letters, Vol. 18, 29-39, 2010.
doi:10.2528/PIERL10080102
References

1. Mahdi Moghadasi, S., A. R. Attari, and M. M. Mirsalehi, "Compact and wideband 1-D mushroom-like EBG filters," Progress In Electromagnetics Research, Vol. 83, 323-333, 2008.
doi:10.2528/PIER08050101

2. Genovesi, S. and A. Monorchio, "A novel electromagnetic bandgap structure for broadband switching noise suppression in high-speed printed circuit boards," Proceedings of the 38th European Microwave Conference, 1374-1377, October 2008.

3. Yanagi, T., T. Oshima, H. Oh-hashi, Y. Konishi, S. Murakami, K. Itoh, and A. Sanada, "Lumped-element loaded EBG structure with an enhanced bandgap and homogeneity," Proceedings of iWAT2008, 458-461, 2008.

4. Young, B., Digital Signal Integrity Modeling and Simulation with Interconnects and Packages, Prentice Hall, October 19, 2000.

5. Zhang, M.-S., Y.-S. Li, C. Jia, and L.-P. Li, "Signal integrity analysis of the traces in electromagnetic-bandgap structure in high-speed printed circuit boards and packages," IEEE Transactions on Microwave Theory and Techniques, Vol. 55, No. 5, 1054-1062, May 2007.
doi:10.1109/TMTT.2007.895413

6. Kamgaing, T. and O. M. Ramahi, "Design and modeling of high-impedance electromagnetic surfaces for switching noise suppression in power planes," IEEE Transactions on Electromagnetic Compatibility, Vol. 47, No. 3, 479-489, Aug. 2005.
doi:10.1109/TEMC.2005.850692

7. Wu, T.-L., C.-C. Wang, Y.-H. Lin, T.-K. Wang, and G. Chang, "A novel power plane with super-wideband elimination of ground bounce noise on high speed circuits," IEEE Microwave and Wireless Components Letters, Vol. 15, No. 3, 174-176, March 2005.
doi:10.1109/LMWC.2005.844216

8. Joo, S.-H., D.-Y. Kim, and H.-Y. Lee, "A S-bridged inductive electromagnetic bandgap power plane for suppression of ground bounce noise," IEEE Microwave and Wireless Components Letters, Vol. 7, No. 10, 709-711, October 2007.

9. Toyota, Y., K. Kondo, S. Yoshida, K. Iokibe, and R. Koga, "Stopband characteristics of planar-type electromagnetic bandgap structure with ferrite film," 2010 Asia-Pacific International Symposium on Electromagnetic Compatibility, 664-667, April 12-16, 2010.

10. Mohajer-Iravani, B. and O. M. Ramahi, "Suppression of EMI and electromagnetic noise in packages using embedded capacitance and miniaturized electromagnetic bandgap structures with high-k dielectrics," IEEE Transactions on Advanced Packing, Vol. 30, No. 4, 776-778, November 2007.
doi:10.1109/TADVP.2007.908028