Vol. 19
Latest Volume
All Volumes
PIERL 124 [2025] PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2010-11-17
Investigations of Reduction of Mutual Coupling Between Two Planar Monopoles Using Two λ/4 Slots
By
Progress In Electromagnetics Research Letters, Vol. 19, 9-18, 2010
Abstract
This article presents a simple structure for reducing mutual coupling between two diversity planar monopole antennas for WLAN 5.2/5.8 GHz applications. The structure has two λ/4 (λ-wavelength in the substrate) slots cut into the ground plane between the two monopoles. In 0.5 λoo,-wavelength in the air) of the antenna spacing, mutual coupling was -33.3, -21.1 dB at 5.2, 5.8 GHz, respectively. The lowest mutual coupling of -33.3 dB was achieved at 5.2 GHz, which is 20.8 dB improvement over the reference.
Citation
Shaoli Zuo, Ying-Zeng Yin, Wei-Jun Wu, Zhi-Ya Zhang, and Jie Ma, "Investigations of Reduction of Mutual Coupling Between Two Planar Monopoles Using Two λ/4 Slots," Progress In Electromagnetics Research Letters, Vol. 19, 9-18, 2010.
doi:10.2528/PIERL10100609
References

1. Usman, M., R. A. Abd-Alhameed, and P. S. Excell, "Design considerations of MIMO antennas for mobile phones," PIERS Online, Vol. 4, No. 1, 121-125, 2008.

2. Che, Y. B., Y. C. Jiao, F. S. Zhang, and H. W. Gao, "A novel small CPW-fed T-shaped antenna for Mimo system applications," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 14, 2027-2036, 2006.
doi:10.1163/156939306779322774

3. Kim, I., C. W. Jung, Y. Kim, and Y. E. Kim, "Low-profile wide-band MIMO antenna with suppressed mutual coupling between two antennas," Microw. Opt. Technol. Lett., Vol. 50, No. 5, 1336-1339, 2008.
doi:10.1002/mop.23368

4. Min, K.-S., M.-S. Kim, C.-K. Park, and M. D. Vu, "Design for PCS antenna based on WIBRO-MIMO," Progress In Electromagnetics Research Letters, Vol. 1, 77-83, 2008.
doi:10.2528/PIERL07111810

5. Gao, G.-P., X.-X. Yang, and J.-S. Zhang, "A printed volcano smoke antenna for UWB and WLAN communications," Progress In Electromagnetics Research Letters, Vol. 4, 55-61, 2008.
doi:10.2528/PIERL08051102

6. Koo, B.-W., M.-S. Baek, and H.-K. Song, "Multiple antenna transmission technique for UWB system," Progress In Electromagnetics Research Letters, Vol. 2, 177-185, 2008.
doi:10.2528/PIERL08011101

7. Abouda, A. A. and S. G. Hggman, "Effect of mutual coupling on capacity of MIMO wireless channels in high SNR scenario," Progress In Electromagnetics Research, Vol. 65, 27-40, 2006.
doi:10.2528/PIER06072803

8. Kim, I., C. W. Jung, Y. Kim, and Y. E. Kim, "Low-profile wideband MIMO antenna with suppressed mutual coupling between two antennas," Microw. Opt. Technol. Lett., Vol. 50, 1336-1339, 2008.
doi:10.1002/mop.23368

9. Tounou, C., C. Decroze, D. Carsenat, T. Monédière, and B. Jécko, "Diversity antennas efficiencies enhancement," Proc. IEEE Antennas Propag. Int. Symp., 1064-1067, Honolulu, HI, June 2007.

10. Chiu, C.-Y., C.-H. Cheng, R. D. Murch, and C. R. Rowell, "Reduction of mutual coupling between closely-packed antenna elements," IEEE Trans. on Antennas and Propag., Vol. 55, 1732-1738, 2007.
doi:10.1109/TAP.2007.898618

11. Sievenpiper, D., L. Zhang, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Microw. Theory Tech., Vol. 47, 2059-2074, 1999.
doi:10.1109/22.798001

12. Yang, F. and Y. Rahmat-Samii, "Microstrip antennas integrated with Electromagnetic Band-Gap (EBG) structures: A low mutual coupling design for array applications," IEEE Trans. Antennas Propag., Vol. 51, 2936-2946, 2003.
doi:10.1109/TAP.2003.817983

13. Li, L., B. Li, H. X. Liu, and C. H. Liang, "Locally resonant cavity cell model for electromagnetic band gap structures," IEEE Trans. Antennas Propag., Vol. 54, 90-100, 2006.
doi:10.1109/TAP.2005.861532

14. Fu, Y. Q., Q. R. Zheng, Q. Gao, and G. H. Zhang, "Mutual coupling reduction between large antenna arrays using electromagnetic bandgap (EBG) structures," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 6, 819-825, 2006.
doi:10.1163/156939306776143415

15. Ganatsos, T., K. Siakavara, and J. N. Sahalos, "Neural networkbased design of EBG surfaces for effective polarization diversity of wireless communications antenna systems," PIERS Online, Vol. 3, No. 8, 1165-1169, 2007.
doi:10.2529/PIERS070215124728

16. Ahn, D., J. S. Park, C. S. Kim, J. Kim, Y. Qian, and T. Itoh, "A design of the low-pass filter using the novel microstrip defected ground structure," IEEE Microw. Theory Tech., Vol. 49, 86-93, 2001.
doi:10.1109/22.899965

17. Caloz, C., H. Okabe, T. Iwai, and T. Itoh, "A simple and accurate model for microstrip structures with slotted ground plane," IEEE Microwave Wireless Comp. Lett., Vol. 14, 133-135, 2004.
doi:10.1109/LMWC.2004.828725

18. Salonen, I. and P. Vainikainen, "Estimation of signal correlation in antenna arrays," Proc. JINA, 383-386, Nice, France, November 2, 2002.

19. Brachat, P. and C. Sabatier, "Réseau d'antennes à 6 capteurs en diversité de polarisation," Proc. JINA, Nice, France, November 2004.

20. Blanch, S., J. Romeu, and I. Corbella, "Exact representation of antenna system diversity performance from input parameter description," IET Electron. Lett., Vol. 39, 705-707, 2003.
doi:10.1049/el:20030495

21. Thaysen, J. and K. B. Jakobsen "Envelope correlation in (N,N) MIMO antenna array from scattering parameters," Microwave and Optical Technology Letters, Vol. 48, 832-834, 2006.