1. Lin, C.-M., C.-C. Su, S.-H. Hung, and Y.-H. Wang, "A compact balun based on microstrip EBG cell and interdigital capacitor," Progress In Electromagnetics Research Letters, Vol. 12, 111-118, 2009.
doi:10.2528/PIERL09092904 Google Scholar
2. Moghadasi, S. M., A. R. Attari, and M. M. Mirsalehi, "Compact and wideband 1-D mushroom-like EBG filters," Progress In Electromagnetics Research, Vol. 83, 323-333, 2008.
doi:10.2528/PIER08050101 Google Scholar
3. Xu, H.-J., Y.-H. Zhang, and Y. Fan, "Analysis of the connection between K connector and microstrip with electromagnetic bandgap (EBG) structures," Progress In Electromagnetics Research, Vol. 73, 239-247, 2007.
doi:10.2528/PIER07040801 Google Scholar
4. Shaban, H. F., H. A. Elmikaty, and A. A. Shaalan, "Study the effects of electromagnetic band-gap (EBG) substrate on two patch microstrip antenna," Progress In Electromagnetics Research B, Vol. 10, 55-74, 2008.
doi:10.2528/PIERB08081901 Google Scholar
5. Scogna, A. C., A. Orlandi, and V. Ricchiuti, "Signal and power integrity analysis of differential lines in multilayer printed circuit boards with embedded electromagnetic bandgap structures," IEEE Trans. Electromagnetic Compatibility, Vol. 52, No. 2, May 2010.
doi:10.1109/TEMC.2009.2027125 Google Scholar
6. Rahmat-Samii, Y. and F. Yang, Electromagnetic Band Gap Structures in Antenna Engineering, Cambridge University Press, 2009.
7. Sievenpiper, D., "Chapter 11: Review of theory, fabrication, and applications of high impedance ground planes," Metamaterials: Physics and Engineering Explorations, edited by N. Engheta and R. Ziolkowski, John Wiley & Sons Inc., 2006. Google Scholar
8. Liang, J. and H. Y. David Yang, "Microstrip patch antennas on tunable electromagnetic and-gap substrates," IEEE Trans. Antennas Propagat., Vol. 57, No. 6, 1612-1617, June 2009.
doi:10.1109/TAP.2009.2019928 Google Scholar
9. Fernández, J. S., G. Goussetis, and R. Cheung "Tunable 2D Electromagnetic Band-Gap (EBG) structures based on MicroElectro-Mechanical Systems (MEMS) for THz frequencies," IEEE Antennas and Propagation Society International Symposium (APSURSI), 1-4, Toronto, 2010. Google Scholar
10. Zhao, X. and L. Zhou, "Theoretical analysis of a novel performance-adjustable EBG-2-D ferrite EBG," Journal of Electronics (China), Vol. 23, No. 3, May 2006. Google Scholar
11. Buell, K., H. Mosallaei, and K. Sarabandi, "A substrate for small patch antennas providing tunable miniaturization factors," IEEE Trans. Microwave Theory Tech., Vol. 54, No. 1, 135-146, 2006.
doi:10.1109/TMTT.2005.860329 Google Scholar
12. Lee, K. F., K. Y. Ho, and J. S. Dahele, "Circular disc microstrip antenna with an air-gap," IEEE Trans. Antennas Propagat., Vol. 32, 880-884, August 1984.
doi:10.1109/TAP.1984.1143214 Google Scholar
13., Dahele, S., S. Mem, and K. F. Lee, "Theory and experiment on microstrip antennas with air gaps," Proc. Inst. Elect. Eng., Part H, Vol. 132, No. 7, 455-460, December 1985. Google Scholar
14. Abboud, F., J. P. Damiano, and A. Papiernik, "A new model for calculating the impedance of coax fed circular microstrip antennas with and without air-gaps," IEEE Trans. Antennas Propagat., Vol. 38, 1882-1885, November 1990.
doi:10.1109/8.102754 Google Scholar
15. Balanis, C. A., Advanced Engineering Electromagnetics, Wiley, New York, 1989.
16. Rahman, M. and M. A. Stuchly, "Transmission line-periodic circuit representation of planar microwave photonic bandgap structures," Microwave and Optical Tech. Lett., Vol. 30, No. 1, 15-19, 2001.
doi:10.1002/mop.1207 Google Scholar