Vol. 19
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2010-12-08
Numerical Total Scattering Cross Section from Reverberating Electromagnetic Experiments
By
Progress In Electromagnetics Research Letters, Vol. 19, 127-135, 2010
Abstract
The total scattering cross section (TSCS) of various targets is computed in this letter from a numerical method in a reverberation chamber (RC). Theoretically TSCS measurements need both a free-space environment (for instance anechoic chamber modeled numerically by absorbing boundary conditions) and various plane waves' stimulations. The method developed allows predicting the TSCS from few simulations in a RC. The foundations and numerical results presented demonstrate the ability of the technique to straightforward compute the TSCS with the finite difference in time domain (FDTD) method. The agreement from these TSCS treatments in RC is finally obtained considering the expected results in free-space.
Citation
Ibrahim El Baba, Sebastien Lallechere, and Pierre Bonnet, "Numerical Total Scattering Cross Section from Reverberating Electromagnetic Experiments," Progress In Electromagnetics Research Letters, Vol. 19, 127-135, 2010.
doi:10.2528/PIERL10102206
References

1. Corona, P., J. Ladbury, and G. Latmiral, "Reverberation-chamber research|then and now: A review of early works and comparison with current understanding," IEEE Trans. Electromagn. Compat., Vol. 44, 87-94, 2002.
doi:10.1109/15.990714

2. Hill, D. A., "Plane wave integral representation for fields in reverberation chambers," IEEE Trans. Electromagn. Compat., Vol. 40, No. 3, 209-217, 1998.
doi:10.1109/15.709418

3. Moglie, F. and A. P. Pastore, "FDTD analysis of plane waves superposition to simulate susceptibility tests in reverberation chambers," IEEE Trans. Electromagn. Compat., Vol. 48, No. 1, 195-202, 2006.
doi:10.1109/TEMC.2006.870793

4. "Reverberation chamber test method," IEC Draft 61000-4-21 Electromagnetic Compatibility (EMC), Part 4, Section 21, 2000.
doi:10.1109/TEMC.2006.870793

5. Alexopoulos, A., "Scattering cross section of a meta-sphere," Progress In Electromagnetics Research Letters, Vol. 9, 85-91, 2009.
doi:10.2528/PIERL09050601

6. Beste, J. M., Reflectivity Measurements, Microwave Antenna Measurements, 3 Ed., J. S. Hollis, T. J. Lyon, and L. Clayton (eds.), Ch. 13, MI Technologies, Suwannee, GA, 2007.

7. Lerosey, G. and J. de Rosny, "Scattering cross section measurement in reverberation chamber," IEEE Trans. Electromagn. Compat., Vol. 49, No. 2, 280-284, 2007.
doi:10.1109/TEMC.2007.893332

8. Arnaut, L. R., "Statistic of the quality factor of a rectangular reverberation chamber," IEEE Trans. Electromagn. Compat., Vol. 45, No. 1, 61-76, 2003.
doi:10.1109/TEMC.2002.808021

9. Carlberg, U., P.-S. Kildal, A. Wolfgang, O. Sotoudeh, and U. Orlenius, "Calculated and measured absorption cross section of lossy objects in reverberation chamber," IEEE Trans. Electromagn. Compat., Vol. 46, No. 2, 146-154, 2004.
doi:10.1109/TEMC.2004.826878

10. Hong, J. I. and C. S. Huh, "Optimization of stirrer with various parameters in reverberation chamber," Progress In Electromagnetics Research, Vol. 104, 15-30, 2010.
doi:10.2528/PIER09121610

11. Ishimaru, A., Wave Propagation and Scattering in Random Media, Ch. 14, Vol. 2, 253-294, Academic, New York, 1978.

12. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. Ant. Propagat., Vol. 14, 302-307, 1966.