1. Dixon, M. J., ABC of Breast Diseases, Wiley-Blackwell, 2006.
2. Nass, S. L., I. C. Henderson, J. C. Lashof and Beyond: Developing Technologies for the Early Detection of Breast Cancer, Mammography, National Academy Press, 2001.
3. Chaudhary, S. S., R. K. Mishra, A. Swarup, and J. M. Thomas, "Dielectric properties of normal and malignant human breast tissue at radiowave and microwave frequencies," Indian J. Biochem. Biophys, Vol. 21, 76-79, 1984. Google Scholar
4. Surowiec, A. J., S. S. Stuchly, J. R. Barr, and A. Swarup, "Dielectric properties of breast carcinoma and the surrounding tissues," IEEE Trans. Biomed. Eng., Vol. 35, No. 4, 257-263, Apr. 1988.
doi:10.1109/10.1374 Google Scholar
5. Joines, W. T., Y. Zhang, C. Li, and R. L. Jirtle, "The measured electrical properties of normal and malignant human tissues from 50 to 900 MHz," Med. Phys., Vol. 21, No. 4, 547-550, Apr. 1994.
doi:10.1118/1.597312 Google Scholar
6. Campbell, A. M. and D. V. Land, "Dielectric properties of female human breast tissue measured in vitro at 3.2 GHz," Phys. Med. Biol., Vol. 37, No. 1, 193-210, 1992.
doi:10.1088/0031-9155/37/1/014 Google Scholar
7. Lazebnik, M., L. McCartney, D. Popovic, C. B. Watkins, M. J. Lindstrom, J. Harter, S. Sewall, A. Magliocco, J. H. Booske, and M. Okoniewski, "A large-scale study of the ultrawideband microwave dielectric properties of normal breast tissue obtained from reduction surgeries," Phys. Med. Biol., Vol. 52, 2637-2656, 2007.
doi:10.1088/0031-9155/52/10/001 Google Scholar
8. Lazebnik , M., D. Popovic, L. McCartney, C. B. Watkins, M. J. Lindstrom, J. Harter, S. Sewall, T. Ogilvie, A. Magliocco, and T. M. Breslin, "A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignantv breast tissues obtained from cancer surgeries," Phys. Med. Biol., Vol. 52, 6093-6115, 2007.
doi:10.1088/0031-9155/52/20/002 Google Scholar
9. Nguyen, M. and R. Rangayyan, "Shape analysis of breast masses in mammograms via the fractal dimension," IEEE Engineering in Medicine and Biology 27th Annual Conference, 3210-3213, 2005.
doi:10.1109/IEMBS.2005.1617159 Google Scholar
10. AlShehri, S. A., S. Khatun, A. B. Jantan, R. S. A. Raja Abdullah, R. Mahmood, and Z. Awang, "3D experimental detection and discrimination of malignant and benign breast tumor using nn-based UWB imaging system," Progress In Electromagnetics Research, Vol. 116, 221-237, 2011. Google Scholar
11. Conceicao, R. C., M. O'Halloran, M. Glavin, and E. Jones, "Effects of dielectric heterogeneity in the performance of breast tumour classifiers," Progress In Electromagnetics Research M, Vol. 17, 73-86, 2011. Google Scholar
12. Conceicao, R. C., M. O'Halloran, M. Glavin, and E. Jones, "Evaluation of features and classifiers for classification of early-stage breast cancer," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 1, 1-14, 2011.
doi:10.1163/156939311793898350 Google Scholar
13. Conceicao, , R. C., M. O'Halloran, E. Jones, and M. Glavin, "Investigation of classifiers for early-stage breast cancer based on radar target signatures ," Progress In Electromagnetics Research, Vol. 105, 295-311, 2010.
doi:10.2528/PIER10051904 Google Scholar
14. Conceicao, R. C., M. O'Halloran, M. Glavin, and E. Jones, "Support vector machines for the classification of early-stage breast cancer based on radar target signatures ," Progress In Electromagnetics Research B, Vol. 23, 311-327, 2010.
doi:10.2528/PIERB10062407 Google Scholar
15. Davis, S. K., B. D. V. Veen, S. C. Hagness, and F. Kelcz, "Breast tumor characterization based on ultrawideband backscatter IEEE Trans. Biomed. Eng.,", Vol. 55, No. 1, 237-246, 2008. Google Scholar
16. Maass, W., "Networks of spiking neurons: The third generation of neural network models," Neural Networks, Vol. 10, No. 9, 1659-1671, 1997.
doi:10.1016/S0893-6080(97)00011-7 Google Scholar
17. Maass, W. and "Computing with spiking neurons", Pulsed Neural Networks, 85, MIT Press, 1999.
18. Holland, J., Adaptation in Natural and Artificial Systems, MIT Press, 1992.
19. Stanley, K. O. and R. Miikkulainen, "Evolving neural networks through augmenting topologies," Evolutionary Computation, Vol. 10, No. 2, 99-127, Jun. 2002.
doi:10.1162/106365602320169811 Google Scholar
20. Goldberg, D. and J. Richardson, "Genetic algorithms with sharing for multimodal function optimization," Proceedings of the Second International Conference on Genetic Algorithms and Their Application, 41-49, 1987. Google Scholar
21. O'Halloran, , M., B. McGinley, R. C. Conceicao, F. Morgan, E. Jones, and M. Glavin, "Spiking neural networks for breast cancer classi¯cation in a dielectrically heterogeneous breast ," Progress In Electromagnetics Research, Vol. 113, 413-428, 2011. Google Scholar
22. Pande, , S., F. Morgan, C. Seamus, B. Mc Ginley, S. Carrillo, L. McDaid, and J. Harkin, "EMBRACE-sysC for analysis of NoC-based spiking neural network architecture," IEEE System on a Chip Symposium (SOC), 2010. Google Scholar
23. Rocke, P., B. McGinley, J. Maher, F. Morgan, and J. Harkin, "Investigating the suitability of FPAAs for evolved hardware spiking neural networks," Proceedings of Evolvable Systems: from Biology to Hardware, 118-126, 2008.
doi:10.1007/978-3-540-85857-7_11 Google Scholar
24. Muinonen, K., Introducing the gaussian shape hypothesis for asteroids and comets, "Astronomy and Astrophysics,", Vol. 332, 1087-1098, 1998. Google Scholar
25. Mishchenko, M. I., "Light scattering by stochastically shaped particles," Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications, Ch. 11, Academic Press, 2000. Google Scholar