Vol. 25
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2011-07-17
Dual-Band Low Profile Directional Antenna with High Impedance Surface Reflector
By
Progress In Electromagnetics Research Letters, Vol. 25, 67-75, 2011
Abstract
A compact dual-band high impedance surface (HIS) electromagnetic band-gap (EBG) structure is designed as a reflector for a dual-band coplanar waveguide (CPW)-fed planar monopole antenna. The reflector comprises an array of metal square patches which are etched square ring slots. Details of the HIS structure and dual reflection phase frequency bands characteristics are presented and discussed. The simulated and measured results show that the combination of the HIS reflector and the antenna provides directional properties for both frequency bands. At the same time, compared to the antenna integrated with a metal reflector, the profile of the proposed antenna is reduced by more than 60%; the radiation efficiency is increased by 23% (simulated result); and the front-back ratio is increased by 17 dB and 11 dB at the two operating frequency bands, respectively.
Citation
Xin Mu, Wen Jiang, Shu-Xi Gong, and Fu-Wei Wang, "Dual-Band Low Profile Directional Antenna with High Impedance Surface Reflector," Progress In Electromagnetics Research Letters, Vol. 25, 67-75, 2011.
doi:10.2528/PIERL11051109
References

1. Nakano, H., K. Kikkawa, N. Kondo, Y. Iitsuka, and J. Yamauchi, "Low-profile equiangular spiral antenna backed by an EBG reflector," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 5, 1309-1318, 2009.
doi:10.1109/TAP.2009.2016697

2. Shams, K. M. Z., M. Ali, and H. S. Hwang, "A planar inductively coupled bow-tie slot antenna for WLAN application," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 7, 861-871, 2006.
doi:10.1163/156939306776149879

3. Denidni, T. A., Q. Rao, and A. R. Sebak, "T-shaped microstrip feeding technique for a dual annnular slot antenna," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 5, 605-614, 2005.
doi:10.1163/1569393053305071

4. Kim, Y., F. Yang and A. Z. Elsherbeni, "Compact artificial magnetic conductor designs using planar square spiral geometries," Progress In Electromagnetics Research, Vol. 77, 43-54, 2007.
doi:10.2528/PIER07072302

5. Gu, Y. Y., W. X. Zhang, and Z. C. Ge, "Two improved Fabry-Perot resonator printed antennas using EBG superstrate and AMC substrate," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 6, 719-728, 2007.
doi:10.1163/156939307780749147

6. Qu, S. W., J. L. Li, Q. Xue, and C. H. Chan, "Novel unidirectional slot antenna with a vertical wall," Progress In Electromagnetics Research, Vol. 84, 239-251, 2008.
doi:10.2528/PIER08072802

7. Yang, F. and Y. R. Samii, "Reflection phase characterizations of the EBG ground plane for low profile wire antenna applications," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 10, 2003.

8. Fu, Y. Q., Q. R. Zheng, Q. Gao, and G. H. Zhang, "Mutual coupling reduction between large antenna arrays using electromagnetic band-gap (EBG) structures," Journal of Electromagnetic Waves and Applications , Vol. 20, No. 6, 819-825, 2006.
doi:10.1163/156939306776143415

9. Sohn, J. R., K. Y. Kim, H.-S. Tae, and H. J. Lee, "Comparative study on various artificial magnetic conductors for low-profile antenna," Progress In Electromagnetics Research, Vol. 61, 27-37, 2006.
doi:10.2528/PIER06011701

10. Zhu, , S. Z. R. Langley, "Dual-band wearable textile antenna on an EBG substrate," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 4, 926-935, 2009.
doi:10.1109/TAP.2009.2014527

11. Yang, F., V. Demir, D. A. Elsherbeni, A. Z. Elsherbeni, and A. A. Eldek, "Enhancement of printed dipole antennas characteristics using semi-EBG ground plane," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 8, 993-1006, 2006.
doi:10.1163/156939306776930330

12. Hosseini, M., A. Pirhadi, and M. Hakkak, "A novel AMC with little sensitivity to the angle of incidence using 2-layer jerusalem cross FSS," Progress In Electromagnetics Research, Vol. 64, 43-51, 2006.
doi:10.2528/PIER06061301

13. Liang, L., C. H. Liang, L. Chen, and X. Chen, "A novel broadband EBG using cascaded mushroom-like structure," Microwave Optical Technology Letters, Vol. 50, No. 21, 67-2170, 2008.

14. Zhang, L.-J., C.-H. Liang, L. Liang, and L. Chen, "A novel design approach for dual-band electromagnetic band-gap structure," Progress In Electromagnetics Research M, Vol. 4, 81-91, 2008.
doi:10.2528/PIERM08071107

15. Yang, , F. and Y. R. Samii, Electromagnetic Band Gap Structures in Antenna Engineering, Cambridge University Press, 2009.