1. ICNIRP "Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz)," Health Phys., Vol. 74, No. 4, 494-522, 1998. Google Scholar
2. IEEE Standards for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz, IEEE Standard C95.1, 1999.
3. IEEE Standards for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz, IEEE Standard C95.1, 2005.
4. Bit-Babik, , G., A. W. Guy, C.-K. Chou, A. Faraone, M. Kanda, A. Gessner, J. Wang, and O. Fujiwara, "Simulation of exposure and SAR estimation for adult and child heads exposed to radiofrequency energy from portable communication devices," Radiation Research, Vol. 163, 580-590, 2005.
doi:10.1667/RR3353 Google Scholar
5. Wiart, J., A. Hadjem, N. Gadi, I. Bloch, M. F. Wong, A. Pradier, D. Lautru, V. F. Hanna, and C. Dale, "Modeling of RF head exposure in children," Bioelectromagnetics, 2005. Google Scholar
6. Wiart, J., A. Hadjem, M. F. Wong, and I. Bloch, "Analysis of RF exposure in the head tissues of children and adults," Phys. Med. Biol., Vol. 53, 3681-3695, 2008.
doi:10.1088/0031-9155/53/13/019 Google Scholar
7. Thurai, M., V. D. Goodridge, R. J. Sheppard, and E. H. Grant, "Variation with age of the dielectric properties of mouse brain cerebrum," Phys. Med. Biol., Vol. 29, 1133-1136, 1984.
doi:10.1088/0031-9155/29/9/009 Google Scholar
8. Thurai, M., M. C. Steel, R. J. Shepard, and E. H. Grant, "Dielectric properties of developing rabbit brain at 37 degrees," Bioelectromagnetics, 1985. Google Scholar
9. Peyman, , A., A. Rezazadeh, and C. Gabriel, "Changes in the dielectric properties of rat tissue as a function of age at microwave frequencies," Phys. Med. Biol., 2001. Google Scholar
10. Gabriel, C., "Dielectric properties of biological tissue: Variation with age," Bioelectromagnetics, 2005. Google Scholar
11. Peyman, A., C. Gabriel, E. H. Grant, G. Vermeeren, and L. Martens, "Variation of the dielectric properties of tissues with age: The e®ect on the values of SAR in children when exposed to walkie-talkie devices," Phys. Med. Biol., 2009. Google Scholar
12. Wang, J., O. Fujiwara, and S. Watanabe, "Approximation of aging effect on dielectric tissue properties for SAR assessment of mobile telephones," IEEE Transactions on Electromagnetic Compatibility, Vol. 48, No. 2, 2006. Google Scholar
13. Altman, P. L. and D. S. Dittmer, Biology Data Book: Blood and Other Bloody Fluids, Federation of American Societies for Experimental Biology, 1974.
14. Wells, J. C. K., M. S. Fewtrell, P. S. W. Davies, J. E. Williams, W. A. Coward, and T. J. Cole, "Prediction of total body water in infants and children," Arch. Dis. Child, Vol. 90, 965-971, 2005.
doi:10.1136/adc.2004.067538 Google Scholar
15. Lichtenecker, K., "Die dielekrizitatskonstante naturlicher und kunstlicher mischkorper," Physikalische Zeitschrift, Vol. 27, 115-158, 1926. Google Scholar
16. Simpkin, R., "Derivation of Leichtencker's logarithmic mixture formula from Maxwell's equations," IEEE Transactions on Microwave Theory and Techniques, Vol. 58, No. 3, 2010.
doi:10.1109/TMTT.2010.2040406 Google Scholar
17. Stogryn, A., "Equations for calculating the dielectric constant of saline water," IEEE Transactions on Microwave Theory and Techniques, Vol. 19, No. 8, 733-736, 1971.
doi:10.1109/TMTT.1971.1127617 Google Scholar
18. Morgenstern, B., D. Mahoney, and B. Warady, "Estimating total body water in children on the basis of height and weight: A reevaluation of the formulas of mellits and cheek," J. Am. Soc. Nephrol., Vol. 13, 1884-1888, 2002.
doi:10.1097/01.ASN.0000019920.30041.95 Google Scholar
19. Chumlea, W., S. Guo, C. Zeller, N. Re, R. Baumgartner, P. Garry, J. Wang, R. Pierson, S. Heymsfields, and R. Siervogel, "Total body water reference values and prediction equations for adults ," Kidney International, Vol. 59, 2250-2258, 2001. Google Scholar
20. Gabriel , C., "Compilation of the dielectric properties of body tissues at RF and microwave frequencies,", Brooks Air Force, Tech. Rep. AL/OE-TR-1996-0037, 1996. Google Scholar
21. Moradi, G. A. Abdipour, "Measuring the permittivity of dielectric materials using STDR approach," Progress In Electromagnetics Research, Vol. 77, 357-365, 2007.
doi:10.2528/PIER07080201 Google Scholar
22. Wang, Z., W. Che, and L. Zhou, "Uncertainty analysis of the rational function model used in the complex permittivity measurement of biological tissues using PMCT probes within a wide microwave frequency band," Progress In Electromagnetics Research, Vol. 90, 137-150, 2009.
doi:10.2528/PIER09010403 Google Scholar
23. Barroso, J. J. and A. L. de Paula, "Retrieval of permittivity and permeability of homogeneous materials from scattering parameters," Journal of Electromagnetic Waves and Applications , Vol. 24, No. 11-12, 1536-1574, 2010. Google Scholar
24. Hasar, U. C., "Unique permittivity determination of low-loss dielectric materials from transmission measurements at microwave frequencies," Progress In Electromagnetics Research, Vol. 107, 31-46, 2010.
doi:10.2528/PIER10060805 Google Scholar
25. Addamo, , G., G. Virone, D. Vaccaneo, R. Tascone, O. A. Peverini, and R. Orta, "An adaptive cavity setup for accurate measurements of complex dielectric permittivity," Progress In Electromagnetics Research, Vol. 105, 141-155, 2010.
doi:10.2528/PIER10042606 Google Scholar