1. Cavuoto, J., "Neural engineering's image problem," IEEE Spectr., Vol. 41, No. 4, 32-37, Apr. 2004.
doi:10.1109/MSPEC.2004.1279191 Google Scholar
2. Furse, C. M., "Design of an antenna for pacemaker communication," Microw. RF, Vol. 39, No. 3, 73-76, Mar. 2000. Google Scholar
3. Schuster, J. and R. Luebbers, "An FDTD algorithm for transient propagation in biological tissue with a cole-cole dispersion relation," IEEE AP/URSI Int. Symp. Dig., Vol. 4, 1988-1991, Jun. 1998. Google Scholar
4. Jacobsen, S. and P. R. Stauffer, "Multifrequency radiometric determination of temperature profiles in a lossy homogenous phantom using a dual-mode antenna with integral water bolus," IEEE Trans. Microw. Theory Tech., Vol. 50, No. 7, 1737-1746, Jul. 2002.
doi:10.1109/TMTT.2002.800424 Google Scholar
5. Scanlon, W. G., N. E. Evans, and J. B. Burns, "FDTD analysis of closecoupled 418 MHz radiating devices for human biotelemetry," Phys. Med. Biol., Vol. 44, 335-345, 1999.
doi:10.1088/0031-9155/44/2/003 Google Scholar
6. Kim, J. and Y. Rahmat-Samii, "Implanted antennas inside a human body: Simulations, designs, and characterizations," IEEE Trans. Microw. Theory Tech., Vol. 52, No. 8, 1934-1943, Aug. 2004.
doi:10.1109/TMTT.2004.832018 Google Scholar
7. Soontornpipit, P., C. Y. Furse, and Y. C. Chung, "Design of implantable microstrip antenna for communication with medical implants," IEEE Trans. Microw. Theory Tech., Vol. 52, No. 8, 1944-1951, Aug. 2004.
doi:10.1109/TMTT.2004.831976 Google Scholar
8. Warty, R. and M. R. Tofighi, "Characterization of implantable antennas for intracranial pressure monitoring: Reflection by and transmission through a scalp phantom," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 10, Oct. 2008.
doi:10.1109/TMTT.2008.2004254 Google Scholar
9. Kazuyuki, W., M. Takahashi, and K. Ito, "Performances of an implanted cavity slot antenna embedded in the human arm," IEEE Trans. Antennas Propag., Vol. 57, No. 4, Apr. 2009. Google Scholar
10. Gabriel, C., S. Gabriel, and E. Corthout, "The dielectric properties of biological tissues: I. Literature survey," Phys. Med. Biol., Vol. 41, 2231-2249, 1996.
doi:10.1088/0031-9155/41/11/001 Google Scholar
11. Gabriel , S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz," Phys. Med. Biol., Vol. 41, 2251-2269, 1996.
doi:10.1088/0031-9155/41/11/002 Google Scholar
12. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues," Phys. Med. Biol., Vol. 41, 2271-2293, 1996.
doi:10.1088/0031-9155/41/11/003 Google Scholar
13. Wuren , T., T. Takai, M. Fujii, and I. Sakagami, "Effective 2-Debye-pole FDTD model of electromagnetic interaction between whole human body and UWB radiation," IEEE Microw. Wireless Compon. Lett., Vol. 17, No. 7, 483-485, Jul. 2007.
doi:10.1109/LMWC.2007.899295 Google Scholar
14. Lazebnik, M., M. Okoniewski, J. H. Booske, and S. C. Hagness, "Highly accurate Debye models for normal and malignant breast tissue dielectric properties at microwave frequencies," IEEE Microw. Wireless Compon. Lett., Vol. 17, No. 12, Dec. 2007.
doi:10.1109/LMWC.2007.910465 Google Scholar
15. Fujii, M., R. Fujii, R. Yotsuki, T. Wuren, T. Takai, and I. Sakagami, "Exploration of whole human body and UWB radiation interaction by e±cient and accurate two-Debye-pole tissue models," IEEE Trans. Antennas Propag., Vol. 58, No. 2, Nov. 2010.
doi:10.1109/TAP.2009.2024968 Google Scholar
16. Guo, B., J. Li, and H. Zmuda, "A new FDTD formulation for wave propagation in biological media with cole-cole model," IEEE Microw. Wireless Compon. Lett., Vol. 16, No. 12, Dec. 2006.
doi:10.1109/LMWC.2006.885583 Google Scholar
17. Mrozowski , M. and M. A. Stuchly, "Parametrization of media dispersive properties for FDTD," IEEE Trans. Antennas Propag., Vol. 45, No. 9, 1438-1439, Sep. 1997.
doi:10.1109/8.623134 Google Scholar
18. Karacolak, T., A. Z. Hood, and E. Topsakal, "Design of a dual-band implantable antenna and development of skin mimicking gels for continuous glucose monitoring," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 4, 1001-1008, Apr. 2008.
doi:10.1109/TMTT.2008.919373 Google Scholar
19. Elsherbeni, A. and V. Demir, The Finite-difference Time-domain Method for Electromagnetics with Matlab Simulations, 484, 2009.
20. Mrozowski, M. and M. A. Stuchly, "Parameterization of media dispersive properties for FDTD," IEEE Trans. Antennas Propag., Vol. 45, No. 9, 1438-1439, 1997.
doi:10.1109/8.623134 Google Scholar
21. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, 3rd Ed., Artech House, Boston, MA, 2005.
22. Abd El-Raouf, H. E., V. V. S. Prakash, J. Yeo, and R. Mittra, "FDTD simulation of a microstrip phased array with a coaxial feed," IEE Proc. --- Microw. Antennas Propag., Vol. 151, No. 3, Jun. 2004. Google Scholar
23. Hajiaboli, A. and M. Popovic, "FDTD subcell modeling of the ineer conductor of the coaxial feed: Accuracy and convergence analysis," IEEE Trans. Magn., Vol. 43, No. 4, 1361-1364, Apr. 2007.
doi:10.1109/TMAG.2006.891009 Google Scholar
24. Riku, M. M. and A. K. Markku, "A stabilized resistive voltage source for FDTD thin-wire models," IEEE Trans. Antennas Propag., Vol. 51, No. 7, Jul. 2003. Google Scholar
25. Taflove, A. and K. Umashankar, "Radar cross section of general three-dimensional structures," IEEE Trans. Electromagn.Compat., Vol. 25, 433-440, 1983.
doi:10.1109/TEMC.1983.304133 Google Scholar
26. Huynh, M. C. and W. Stutzman, "Ground plane effects on planar inverted-f antenna (PIFA) performance," Proc. Inst. Elect. Eng. Microw., Antennas Prop., Vol. 150, No. 4, 209-213, Aug. 2003.
doi:10.1049/ip-map:20030551 Google Scholar