1. Taflove, A., Computational Electrodynamics: The Finite-di®erence Time-domain Method, Artech House, Norwood, MA, 1996.
2. Namiki, T., "A new FDTD algorithm based on alternating direction implicit method," IEEE Trans. Microwave Theory Tech., Vol. 47, 2003-2007, 1999.
doi:10.1109/22.795075 Google Scholar
3. Garcia, , S. G., T. W. Lee, and S. C. Hagness, "On the accuracy of the ADI-FDTD method," IEEE Antennas Wireless Propagat. Lett., Vol. 1, 31-34, 2002.
doi:10.1109/LAWP.2002.802583 Google Scholar
4. Heh, , D. Y. and E. L. Tan, "Unified efficient fundamental ADI-FDTD schemes for lossy media," Progress In Electromagnetics Research B, Vol. 32, 217-242, 2011.
doi:10.2528/PIERB11051801 Google Scholar
5. Yang, Y., Z. H. Fan, D. Z. Ding, and S. B. Liu, "Extend two-step preconditioning technique for the Crank-Nicolson finite-difference time-domain method to analyze the 3D microwave circuits," International Journal of RF and Microwave Computer-aided Engineering, Vol. 19, No. 4, 460-469, Jul. 2009.
doi:10.1002/mmce.20369 Google Scholar
6. Chen, J. and J. Wang, "Comparison between HIE-FDTD method and ADI-FDTD method," Microwave Opt. Technol. Lett., Vol. 49, 1001-1005, May 2007.
doi:10.1002/mop.22340 Google Scholar
7. Chen , J., J. Wang, and C. Tian, "Three-dimensional hybrid implicit explicit finite-difference time-domain method in the cylindrical coordinate system," IEEE Trans. Antennas Propagat., Vol. 3, 1254-1261, Jan. 2009. Google Scholar
8. Mur, G., "Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic field equations," IEEE Trans. Electromagn. Compat., Vol. 23, No. 4, 377-382, Nov. 1981.
doi:10.1109/TEMC.1981.303970 Google Scholar
9. Xiao, F., X. H. Tang, and L. Wang, "Stability and numerical dispersion analysis of a 3D hybrid implicit-explicit FDTD method," IEEE Trans. Antennas Propagat., Vol. 56, 3346-3350, 2008.
doi:10.1109/TAP.2008.929528 Google Scholar
10. Fu, W. M. and E. L. Tan, "Stability and dispersion analysis for ADI-FDTD method in lossy media," IEEE Trans. Antennas Propagat., Vol. 55, No. 4, 1095-1102, Apr. 2007.
doi:10.1109/TAP.2007.893378 Google Scholar
11. Gedney , S. D., "An anisotropic perfectly matched layer absorbing medium for the truncation of FDTD lattices," IEEE Trans. Antennas and Propagat., Vol. 44, 1630-1639, 1996.
doi:10.1109/8.546249 Google Scholar
12. Yuan, W. and E. P. Li, "Numerical dispersion and impedance analysis for 3D perfectly matched layers used for truncation of the FDTD computations," Progress In Electromagnetics Research, Vol. 47, 193-212, 2004.
doi:10.2528/PIER03121002 Google Scholar
13. Shreim, A. M. and M. F. Hadi, "Integral PML absorbing boundary conditions for the high-order M24 FDTD algorithm," Progress In Electromagnetics Research, Vol. 76, 141-152, 2007.
doi:10.2528/PIER07070303 Google Scholar
14. Zhang, , Y. Q. and D. B. Ge, "A unified FDTD approach for electromagnetic analysis of dispersive objects," Progress In Electromagnetics Research, Vol. 96, 155-172, 2009.
doi:10.2528/PIER09072603 Google Scholar
15. Tay , W. C. and E. L. Tan, "Implementation of the Mur first order absorbing boundary condition in e±cient ADI-FDTD method," IEEE Int. Symp. Antennas Propagat. USNC/URSI Nat. Radio Sci. Meeting, Charleston, SC, Jun. 2009. Google Scholar
16. Cakir, G., "Design of a compact and wideband microstrip bandstop filter," Microwave Opt. Technol. Lett., Vol. 50, 2612-2614, 2008.
doi:10.1002/mop.23742 Google Scholar
17. Guan , X. H., S. Jiang, L. Shen, H. W. Liu, G. H. Li, and D. M. Xu, "A microstrip dual-band bandpass filter based on a novel admittance inverter," IEEE MTT-S International Microwave Symposium, 577-580, 2010. Google Scholar