Vol. 28
Latest Volume
All Volumes
PIERL 129 [2026] PIERL 128 [2025] PIERL 127 [2025] PIERL 126 [2025] PIERL 125 [2025] PIERL 124 [2025] PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2011-12-19
A Compact Zeroth Order Resonating Antenna Using Complementary Split Ring Resonator with Mushroom Type of Structure
By
Progress In Electromagnetics Research Letters, Vol. 28, 139-148, 2012
Abstract
A compact zeroth order resonance (ZOR) antenna based on composite right left handed Transmission Line (CRLH TL) with complementary split ring resonators (CSRR) is presented in this paper. In the proposed antenna, CRLH TL is realized by the conventional mushroom type (CMT) of structure. The unit cell of proposed antenna comprises the CMT structure and CSRR where the CSRR is etched on the patch of the mushroom. Presence of CSRR introduces the lumped components in the shunt arm of the unit cell which results in the reduction of the shunt resonance frequency. The presented antenna consists of 4 unit cells and is excited by the quarter wavelength TL. The simulation and experimental results are in close agreement. The proposed structure has nearly 8.32% footprint area of the conventional half wavelength antenna.
Citation
Gautam Kumar Singh, Raghvendra Kumar Chaudhary, and Kumar Vaibhav Srivastava, "A Compact Zeroth Order Resonating Antenna Using Complementary Split Ring Resonator with Mushroom Type of Structure," Progress In Electromagnetics Research Letters, Vol. 28, 139-148, 2012.
doi:10.2528/PIERL11110709
References

1. Sanada, A., M. Kimura, I. Awai, C. Caloz, and T. Itoh, "A planar zeroth order resonator antenna using left handed transmission line," IEEE European Microwave Conference, 1341-1344, 2004.        Google Scholar

2. Lai , A., K. M. K. H. Leong, and T. Itoh, "Infinite wavelength resonant antennas with monopole radiation pattern based on periodic structures," IEEE Trans. Antennas Propag., Vol. 55, No. 3, 868-875, 2007.
doi:10.1109/TAP.2007.891845        Google Scholar

3. Sanada , A., C. Caloz, and T. Itoh, "Planar distributed structures with negative refractive properties," IEEE Trans. Microwave Theory Tech., Vol. 52, No. 2, 1252-1263, 2004.
doi:10.1109/TMTT.2004.825703        Google Scholar

4. Lee , J. G. and J. H. Lee, "Zeroth order resonance loop antenna," IEEE Trans. Antennas Propag., Vol. 55, No. 3, 994-997, 2007.
doi:10.1109/TAP.2007.891875        Google Scholar

5. Park, J. H., Y. H. Ryu, and J. H. Lee, "Mu zero resonance antenna," IEEE Trans. Antennas Propag., Vol. 58, No. 6, 1865-1875, 2010.
doi:10.1109/TAP.2010.2046832        Google Scholar

6. Erentok, A. and R. W. Ziolkowski, "Metamaterial-inspired e±cient electrically small antennas," IEEE Trans. Antennas Propag., Vol. 56, No. 3, 2008.
doi:10.1109/TAP.2008.916949        Google Scholar

7. Alici, K. B., A. E. Serebryannikov, and E. Ozbay, "Radiation properties and coupling analysis of a metamaterial based, dual polarization, dual band, multiple split ring resonator antenna," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 8-9, 1183-1193, 2010.
doi:10.1163/156939310791586188        Google Scholar

8. Alu, A., F. Bilotti, N. Engheta, L. Vegni, "Subwavelength, compact, resonant patch antennas loaded with metamaterials," IEEE Trans. Antennas Propag., Vol. 55, No. 1, 13-25, 2007.
doi:10.1109/TAP.2006.888401        Google Scholar

9. Veselago , V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Soviet Physics Uspekhi, Vol. 10, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699        Google Scholar

10. Lai, A., C. Caloz, and T. Itoh, "Composite right/left-handed transmission line metamaterials," IEEE Microwave Magazine, Vol. 5, No. 3, 34-50, 2004.
doi:10.1109/MMW.2004.1337766        Google Scholar

11. Caloz, C. and T. Itoh, "Novel microwave devices and structures based on the transmission line approach of meta-materials," IEEE-MTT International Symp., Vol. 1, 195-198, 2003.        Google Scholar

12. Falcone , F., T. Lopetegi, J. D. Baena, R. Marques, F. Martin, and M. Sorolla, "Eddective negative stopband microstrip lines based on complementary split ring resonators," IEEE Microw. Wireless Compon. Lett., Vol. 14, No. 6, 280-282, 2004.
doi:10.1109/LMWC.2004.828029        Google Scholar

13. Baena, J., J. Bonache, F. Martin, R. Marques, and F. Falcone, "Equivalent-circuit models for split-ring resonators and complementary split-sing resonators coupled to planar transmission lines," IEEE Trans. Microwave Theory Tech., Vol. 53, No. 4, 1451-1461, 2005.
doi:10.1109/TMTT.2005.845211        Google Scholar

14. Bonache , J., M. Gil, I. Gil, J. Garcia-Garcia, and F. Martin, "Limitations and solutions of resonant-type metamaterial transmission lines for filter applications: The hybrid approach," IEEE MTT-S Intl. Microwave Symp. Digest, 939-942, San Francisco, CA, USA, 2006.        Google Scholar

15. Baek, S. and S. Lim, "Miniaturized zeroth order resonating antenna on spiral slotted ground," Electronic Letter, Vol. 45, 2009.        Google Scholar

16. Peng , L., C. L. Ruan, and Z.-Q. Li, "A novel compact and polarization-dependent mushroom-type EBG using CSRR for dual/triple-band applications," IEEE Microw. Wireless Compon. Lett., Vol. 20, No. 9, 489-491, 2010.
doi:10.1109/LMWC.2010.2051536        Google Scholar

17. Lee , M. J., S. Pyo, W. S. Yoon, I. C. Shin, and Y. S. Kim, "A size reduced CRLH resonant antenna based on Interdigital capacitors with defected ground," Microwave Opt. Technol. Lett., Vol. 52, 2142-2145, 2010.
doi:10.1002/mop.25362        Google Scholar

18. Jang, K. D., J. H. Kim, D. H. Lee, and W. S. Park, "Compact resonant antenna based on composite right/left handed transmission line with magneto dielectric substrate," Microwave Opt. Technol. Lett., Vol. 51, 1994-1997, 2009.
doi:10.1002/mop.24490        Google Scholar

19. Sievenpiper , D., L. Zhang, R. F. Jimenez Broas, N. G. A. Opolous, and E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 11, 2059-2074, 1999.
doi:10.1109/22.798001        Google Scholar