1. Lee, W. C. Y., "Spectrum efficiency in cellular," IEEE Trans. Veh. Technol., Vol. 38, 69-75, May 1989.
doi:10.1109/25.61338
2. Pahlavan, K. and A. H. Levesque, "Wireless data communication," Proc. IEEE, Vol. 82, 1398-1430, Sep. 1994.
doi:10.1109/5.317085
3. Takada, J., J. Fu, H. Zhu, and T. Kobayashi, "Spatio-temporal channel characterization in a suburban non line-of-sight microcellular environment," IEEE J. Select. Areas Commun., Vol. 20, No. 3, 532-538, Apr. 2002.
doi:10.1109/49.995512
4. Masui, H., T. Kobayashi, and M. Akaike, "Microwave path-loss modeling in urban line-of-sight environments," IEEE J. Select. Areas Commun., Vol. 20, No. 6, 1151-1155, Aug. 2002.
doi:10.1109/JSAC.2002.801215
5. Kitao, K. and S. Ichitsubo, "Path loss prediction formula for microcell in 400MHz to 8 GHz band," IET Electronics Letters, Vol. 40, No. 11, 685-687, May 2004.
doi:10.1049/el:20040475
6. Hernandez-Valdez, G., F. A. Cruz-Perez, and D. Lara-Rodriguez, "Sensitivity of the system performance to the propagation parameters in LOS microcellular environments," IEEE Trans. Veh. Technol., Vol. 57,, No. 6, 3488-3508, Nov. 2008.
7. Cox, D. C., R. R. Murray, and A. W. Norris, "Antenna height dependence of 800MHz attenuation measured in houses," IEEE Trans. Veh. Technol., Vol. 34, No. 2, 108-115, May 1985.
doi:10.1109/T-VT.1985.24043
8. Green, E., "Radio link design for microcellular systems ," British Telecom. Technology, Vol. 8, No. 1, 1990.
9. Cruz-Perez, F. A. and D. Lara-Rodriguez, "Impact of the break-point distance on the reverse link capacity of a CDMA manhattan like microcellular system," Proc. 5th IEEE International Symposium on Spread Spectrum Techniques and Applications (ISSSTA' 1998), Vol. 1, 262-266, Sun City, South Africa, Sep. 1998.
10. Min, S. and H. L. Bertoni, "Effect of path loss on CDMA system design for highway microcells," Proc. 48th IEEE Vehicular Technology Conference (VTC'1998), 1009-1013, Ottawa, Canada, May 1998.
11. Alouini, M. and A. J. Goldsmith, "Area spectral efficiency of cellular mobile radio systems," IEEE Trans. Veh. Technol., Vol. 48, No. 4, 1047-1065, Jul. 1999.
doi:10.1109/25.775355
12. Ho, C., J. Copeland, C. Lea, and G. Stuber, "Impact of the cell size on the cell's Erlang capacity and call admission control in the DS/CDMA cellular networks," Proc. 51st IEEE Vehicular Technology Conference (VTC'2000-Spring), Vol. 1, 385-389, May 2000.
13. Hernandez-Valdez, G., F. A. Cruz-Perez, and M. Lara, "Impact of the cell size and the propagation model parameters on the performance of microcellular networks," Proc. 11th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC'2000), Vol. 1, 292-296, London, UK, 2000.
14. Har, D. and H. L. Bertoni, "Effect of anisotropic propagation modeling on microcellular system design," IEEE Trans. Veh. Technol., Vol. 49, No. 4, 1303-1313, Aug. 2000.
doi:10.1109/25.875247
15. Ahmed, B. T., M. C. Ramon, and L. de Haro Ariet, "Capacity and interference statistics of highways W-CDMA cigar-shaped microcells (uplink analysis)," IEEE Commun. Lett., Vol. 6, No. 5, 172-174, Aug. 2002.
doi:10.1109/4234.1001654
16. Anang, K. A., P. B. Rapajic, T. I. Eneh, and G. Oletu, "Sensitivity of information capacity of land mobile cellular system to the base station antenna height at higher microwave frequencies," Proc. 3rd International Conference on Computer Research and Development (ICCRD'2011), Vol. 3, 167-172, Shanghai, China, May 2011.
doi:10.1109/ICCRD.2011.5764271
17. Anang, K. A., P. B. Rapajic, T. I. Eneh, and B. Lawal, "Sensitivity of information capacity of land mobile cellular system to propagation loss parameters at higher microwave frequencies," Proc. 7th IEEE International Wireless Communications and Mobile Computing Conference, 630-635, Istanbul, Turkey, Jul. 2011.
18. Zhou, S., M. Zhao, X. Xu, J. Wang, and Y. Yao, "Distributed wireless communication system: A new architecture for future public wireless access," IEEE Commun. Mag., Vol. 41, 108-113, 2003.
doi:10.1109/MCOM.2003.1186553
19. Anang, K. A., P. B. Rapajic, T. I. Eneh, and Y. Nijsure, "Minimum cell size for information capacity increase in cellular wireless network," Proc. 73rd IEEE Vehicular Technology Conference (VTC'2011), 305-311, Budapest, Hungary, May 2011.
20. Ge, X., K. Huang, C. X. Wang, X. Hong, and X. Yang, "Capacity analysis of a multi-cell multi-antenna cooperative cellular network with co-channel interference," IEEE Trans. Wireless Commun., Vol. 10, No. 10, 3298-3309, Oct. 2011.
doi:10.1109/TWC.2011.11.101551
21. Nisirat, M. A., M. Ismail, L. Nissirat, and S. A. Alkhawaldeh, "A terrain roughness correction factor for Hata path loss model at 900 MHz," Progress In Electromagnetics Research C, Vol. 22, 11-22, 2011.
doi:10.2528/PIERC11041402
22. Phaebua, K., C. Phongcharoenpanich, M. Krairiksh, and T. Lertwiriyaprapa, "Path-loss prediction of radio wave propagation in an orchard by using modified UTD method," Progress In Electromagnetics Research, Vol. 128, 347-363, 2012.
23. Sirkova, I., "Propagation factor and path loss simulation results for two rough surface reflection coefficients applied to the microwave ducting propagation over the sea," Progress In Electromagnetics Research M, Vol. 17, 151-166, 2011.
24. Caluyo, F. S. and J. C. D. Cruz, "Antenna characterization and determination of path loss exponents for 677MHz channel using fixed and portable digital terrestrial television," Progress In Electromagnetics Research C, Vol. 29, 149-161, 2012.
25. Ne·skovic, A., N. Ne·skovic, and D. Paunoc, "Macrocell electric field strength prediciton model based upon artificial neural networks," IEEE J. Select. Areas Commun., Vol. 20, No. 6, 1170-1176, Aug. 2002.
doi:10.1109/JSAC.2002.801217
26. Cruz-Perez, F. A., D. Lara-Rodriguez, and M. Lara, "Full- and half-square cell plans in urban CDMA microcellular networks," IEEE Trans. Veh. Technol., Vol. 52, No. 3, 502-511, May 2003.
doi:10.1109/TVT.2003.811531
27. Oda, Y., K. Tsuunekawa, and M. Hata, "Advanced los path-loss model in microcellular mobile communications," IEEE Trans. Veh. Technol., Vol. 49, No. 6, 2121-2125, Nov. 2000.
doi:10.1109/25.901884
28. Zhao, X., J. Kivinen, P. Vainikainen, and K. Skog, "Propagation characteristics for wideband outdoor mobile communications at 5.3 GHz," IEEE J. Select. Areas Commun., Vol. 20, No. 3, 507-514, 2002.
doi:10.1109/49.995509
29. Sarkar, T. K., Z. Ji, K. Kim, A. Medouri, and M. Salazar-Palma, "A survey of various propagation models for mobile communication," IEEE Antennas Propagat. Mag., Vol. 45, 51-74, Jun. 2003.
doi:10.1109/MAP.2003.1232163
30. Green, E. and M. Hata, "Microcellular propagation measurements in an urban environment," Proc. 1st IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC'1991), 324-328, London, UK, Sep. 1991.
31. G. TR25.996 "3GPP SCM channel models," 3GPP TR25.996, Vol. v6.1.0, Sep. 2003.
32. ITU "Propagation data and prediction methods for planning of short-range outdoor radiocommunication systems and radio local area networks in the frequency range 300MHz to 100 GHz,", Recommendation ITU-R P.1411-1, iTU Radiocommunication Assembly, 2012.
33. Stuber, G. L., Principles of Mobile Communication, 2nd Ed., 98-100, Kluwer Academic, Norwell, MA, 2001.
34. Lee, W. C. Y., Mobile Communication Design Fundamentals, 142, John Wiley & Sons, New York, NY, 1993.
doi:10.1002/9780470930427
35. Singh, S., N. B. Mehta, A. F. Molisch, and A. Mukhopadhyay, "Moment-matched lognormal modeling of uplink interference with power control and cell selection," IEEE Trans. Wireless Commun., Vol. 9, No. 3, 932-938, Mar. 2010.
doi:10.1109/TWC.2010.03.090521