Vol. 38
Latest Volume
All Volumes
PIERL 129 [2026] PIERL 128 [2025] PIERL 127 [2025] PIERL 126 [2025] PIERL 125 [2025] PIERL 124 [2025] PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2013-03-13
Study of the Coil Structure for Wireless Chip-to-Chip Communication Applications
By
Progress In Electromagnetics Research Letters, Vol. 38, 127-136, 2013
Abstract
In this work, we propose a merged coil structure for wireless chip-to-chip communication technology. Using the proposed coil structure, the chip size can be reduced, and the transmitted power can be improved by approximately 5 dB compared to typical coil structure. To verify the feasibility of the coil, an electromagnetic simulation and a schematic simulation are performed. The coil was implemented using 50-nm digital CMOS technology. From the experimental results, the feasibility was proved.
Citation
Changhyun Lee, Jonghoon Park, Jinho Yoo, and Changkun Park, "Study of the Coil Structure for Wireless Chip-to-Chip Communication Applications," Progress In Electromagnetics Research Letters, Vol. 38, 127-136, 2013.
doi:10.2528/PIERL13022002
References

1. Lee, Y. C., H. T. Ghaffari, J. M. Segelken, "Internal thermal resistance of a multi-chip packaging design for vlsi based systems," IEEE Transactions on Components, Hybrids, and Manufacturing,, Vol. 12, No. 2, 163-169, Jun. 1989.
doi:10.1109/33.31420        Google Scholar

2. Lu, J.-Q., "3-D hyperintegration and packaging technologies for micronano systems," Proc. IEEE, Vol. 97, No. 1, 18-30, Jan. 2009.
doi:10.1109/JPROC.2008.2007458        Google Scholar

3. Xu, Z. and J.-Q. Lu, "Three-dimensional coaxial through-silicon-via (TSV) design," IEEE Electron. Device Letters, Vol. 33, No. 10, 1441-1443, Oct. 2012.
doi:10.1109/LED.2012.2207703        Google Scholar

4. Yang, J.-R., H.-C. Son, and Y.-J. Park, "A class-E power amplifier with coupling coils for a wireless power transfer system," Progress In Electromagnetics Research C, Vol. 35, 13-22, 2013.        Google Scholar

5. Yuan, N., C. R. Liu, and X. Nie, "Electromagnetic field of arbitrarily oriented coil antennas in coplex underground environment," Progress In Electromagnetics Research B, Vol. 44, 261-282, 2012.        Google Scholar

6. Babic, S. I., C. Akyel, Y. Ren, and W. Chen, "Magnetic force calculation between circular coils of rectangular cross section with parallel axes for superconducting magnet," Progress In Electromagnetics Research B, Vol. 37, 275-288, 2012.
doi:10.2528/PIERB11110508        Google Scholar

7. Park, C., J. Han, H. Kim, and S. Hong, "A 1.8-GHz CMOS power amplifier using a dual-primary transformer with improved efficiency in the low power region," IEEE Trans. on Microw. Theory and Tech., Vol. 56, No. 4, 782-792, Apr. 2008.
doi:10.1109/TMTT.2008.918152        Google Scholar

8. Danesh, M. and J. R. Long, "Differentially driven symmetric microstrip inductors," IEEE Trans. on Microw. Theory and Tech., Vol. 50, No. 1, 332-341, Jan. 2002.
doi:10.1109/22.981285        Google Scholar

9. Kang, B., H. Hwang, and C. Park, "Differential transformer using bonder-wires and patterns on a printed circuit board for RF circuit applications," Progress In Electromagnetics Research, Vol. 135, 363-371, 2013.        Google Scholar

10. Park, C., D. H. Lee, J. Han, and S. Hong, "Tournament-shaped magnetically coupled power-combiner architecture for RF CMOS power amplifier," IEEE Trans. on Microw. Theory and Tech., Vol. 55, No. 10, 2034-2042, Oct. 2007.
doi:10.1109/TMTT.2007.905482        Google Scholar

11. Aoki, I., S. D. Kee, D. B. Rutledge, and A. Hajimiri, "Distributed active transformer --- A new power-combining and impedance-transformation technique," IEEE Trans. on Microw. Theory and Tech., Vol. 50, No. 1, 316-331, Jan. 2002.
doi:10.1109/22.981284        Google Scholar

12. Brandao Faria, J. A. M., "The effect of power-line sagged conductors on the evaluation of the differential voltage in a nearby circuit at ground level," Progress In Electromagnetics Research M, Vol. 24, 209-220, 2012.        Google Scholar