Vol. 40
Latest Volume
All Volumes
PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2013-05-19
Periodic Transmission of Circular Binary Fresnel Zone Plates with Etching Depth and Substrate
By
Progress In Electromagnetics Research Letters, Vol. 40, 93-105, 2013
Abstract
Based on the scattering theory and the Green function method, a dynamical theory is given for calculating the diffraction of deeply-etched gratings with a stratified structure substrate. The key of our method is that the patterned grating structure is considered as a perturbation to the unpatterned stratified structure rather than to vacuum. Using the first-order Born approximation and in the Fresnel diffraction region, we obtain a simple analytical expression, which can be used to calculating the scattering intensity of deeply-etched circular binary Fresnel zone plates with a stratified substrate (MDECBFZPs). The numerical results show that the focusing intensity at the foci of the MDCBFZP changes periodically with the etching depth and the thickness of the substrate film. Our results are in good agreement with FDTD simulations.
Citation
Yaoju Zhang, Shilei Li, Yan Zhu, Youyi Zhuang, Taikei Suyama, Chongwei Zheng, and Yoichi Okuno, "Periodic Transmission of Circular Binary Fresnel Zone Plates with Etching Depth and Substrate," Progress In Electromagnetics Research Letters, Vol. 40, 93-105, 2013.
doi:10.2528/PIERL13031802
References

1. Baez, A. V., "Fresnel zone plate for optical image formatting using extreme ultraviolet and soft X radiation," J. Opt. Soc. Am., Vol. 51, 405-412, 1961.
doi:10.1364/JOSA.51.000405

2. Schmahl, G., B. Niemann, D. Rudolph, M. Diehl, J. Thieme, W. Neff, R. Holz, R. Lebert, F. Richter, and G. Herziger, "A laboratory X-ray microscope with a plasma X-ray source," X-Ray Microscopy III, A. G. Michette, G. R. Morrison, and C. J. Buckley, Eds., Springer-Verlag, Berlin, 1992.

3. Fu, Y., W. Zhou, L. E. N. Lim, C. L. Du, and X. G. Luo, "Plasmonic microzone plate: Superfocusing at visible regime," Appl. Phys. Lett., Vol. 91, 061124 2007.

4. Mote, R. G., S. F. Yu, B. K. Ng, W. Zhou, and S. P. Lau, "Near-field focusing properties of zone plates in visible regime --- New insights," Opt. Express, Vol. 16, 9554-9564, 2008.
doi:10.1364/OE.16.009554

5. Kim, H. C., H. Ko, and M. S. Cheng, "High efficient optical focusing of a zone plate composed of metal/dielectric multilayer," Opt. Express, Vol. 17, 3078-3083, 2009.
doi:10.1364/OE.17.003078

6. Carretero, L., M. Perez-Molina, S. Blaya, P. Acebal, A. Fimia, R. Madrigal, and A. Murciano, "Near-field electromagnetic analysis of perfect black Fresnel zone pates using radial polarization," J. Lightwave Technolgy, Vol. 29, 2585-2591, 2011.
doi:10.1109/JLT.2011.2161457

7. Wood, R. W., Physical Optics, 3rd Ed., Macmillan, New York, 1934.

8. Cao, Q. and J. Jahns, "Comprehensive focusing analysis of various Fresnel zone plates," J. Opt. Soc. Am. A, Vol. 21, 561-571, 2004.
doi:10.1364/JOSAA.21.000561

9. Zhang, Y., C. Zheng, and H. Xiao, "Improving the resolution of a solid immersion lens optical system using a multiphase Fresnel zone plate," Opt. & Laser Techn., Vol. 37, 444-449, 2005.
doi:10.1016/j.optlastec.2004.07.011

10. Zhang, B. and D. Zhao, "Focusing properties of Fresnel zone plates with spiral phase," Opt. Express, Vol. 18, 12818-12823, 2010.
doi:10.1364/OE.18.012818

11. Lu, P., C. Zhou, J. Feng, and H. Cao, "Unified design of wavelength-independent deep-etched fused-silica gratings," Opt. Commun., Vol. 283, 4135-4140, 2010.
doi:10.1016/j.optcom.2010.06.041

12. Wang, B., C. Zhou, J. Feng, H. Ru, and J. Zheng, "Wideband two-port beam splitter of a binary fused-silica phase grating," Appl. Opt., Vol. 47, 4004-4008, 2008.
doi:10.1364/AO.47.004004

13. Djabery, R., S. Nikmehr, and S. Hosseinzadeh, "Grating effects on sidelobe suppression in MIM plasmonic filters," Progress In Electromagnetics Research, Vol. 135, 271-280, 2013.

14. Edee, K., I. Fenniche, G. Granet, and B. Guizal, "Modal method based on subsectional Gegenbauer polynomial expansion for lamellar gratings," Progress In Electromagnetics Research, Vol. 133, 17-35, 2013.

15. Sun, N.-H., J.-J. Liau, Y.-W. Kiang, S.-C. Lin, R.-Y. Ro, J.-S. Chiang, and H.-W. Chang, "Numerical analysis of apodized fiber Bragg gratings using coupled mode theory," Progress In Electromagnetics Research, Vol. 99, 289-306, 2009.
doi:10.2528/PIER09102704

16. Frances, F., C. Neipp, A. Marquez, A. Belendez, I. Pascual, "Analysis of reflection gratings by a matrix method approach," Progress In Electromagnetics Research, Vol. 118, 167-183, 2011.
doi:10.2528/PIER11050403

17. Born, M. and E.Wolf, Principle of Optics, 7th Ed., Cambridge University Press, Cambridge, 1999.

18. Sammar, A. and J.-M. Andre, "Diffraction of multilayer gratings and zone plates in the X-ray region using the born approximation," J. Opt. Soc. Am. A, Vol. 10, 600-613, 1993.
doi:10.1364/JOSAA.10.000600

19. Sammar, A. and J.-M. Andre, "Dynamical theory of stratified Fresnel linear zone plates," J. Opt. Soc. Am. A, Vol. 10, 2324-2337, 1993.
doi:10.1364/JOSAA.10.002324

20. Le, Z. and S. Pan, "Application of quantum scattering theory to 2-D focusing multilayer reflection circular zone plate," Opt. Commun., Vol. 159, 285-292, 1999.
doi:10.1016/S0030-4018(98)00583-5