Vol. 40
Latest Volume
All Volumes
PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2013-05-19
Computation of the Resonant Frequency and Quality Factor of Lossy Substrate Integrated Waveguide Resonators by Method of Moments
By
Progress In Electromagnetics Research Letters, Vol. 40, 107-117, 2013
Abstract
This paper presents a technique for the efficient and accurate determination of resonant frequencies and quality factors of Substrate Integrated Waveguide (SIW) resonators. To consider resonators of a general shape the SIW structure is modelled as a parallel plate waveguide populated with metalized via holes. The field into the SIW cavity is found solving the scattering problem for the set of vias into the parallel plate. Resonances are determined searching for the complex frequencies for which the determinant of the system of equations pertinent to the scattering is zero. To speed up the search, a first guess for the resonance frequency is found using an estimate of the minimum singular value of the system of equations. A Muller search in the complex plane is later used to accurately determine both frequencies and quality factors. Results relevant to resonators of various shapes are presented and compared with results obtained with a commercial code.
Citation
Giandomenico Amendola, Giovanni Angiulli, Emilio Arnieri, and Luigi Boccia, "Computation of the Resonant Frequency and Quality Factor of Lossy Substrate Integrated Waveguide Resonators by Method of Moments," Progress In Electromagnetics Research Letters, Vol. 40, 107-117, 2013.
doi:10.2528/PIERL13031808
References

1. Wang, R., L.-S. Wu, and X.-L. Zhou, "Compact folded substrate integrated waveguide cavities and bandpass filter," Progress In Electromagnetics Research, Vol. 84, 135-147, 2008.
doi:10.2528/PIER08071501

2. Zheng, B, Z. Zhao, and Y. Lv, "A K-band SIW filter with bypass coupling substrate integrated circular cavity (SICC) to improved stopband performance for satellite communication," Progress In Electromagnetics Research C, Vol. 17, 95-104, 2010.
doi:10.2528/PIERC10092403

3. Boccia, L., A. Emanuele, E. Arnieri, A. Shamsafar, and G. Amendola, "Substrate integrated power combiners," Proceedings of 6th European Conference on Antennas and Propagation, EuCAP 2012, 3631-3634, Prague, Czech Republic, 2012.

4. Russo, I., L. Boccia, G. Amendola, and H. Schumacher, "Compact hybrid coaxial architecture for 3 GHz-10 GHz UWB quasi-optical power combiners," Progress In Electromagnetics Research, Vol. 122, 77-92, 2012.
doi:10.2528/PIER11101704

5. Amendola, G., E. Arnieri, L. Boccia, and V. Ziegler, "Annular ring slot radiating element for integrated millimeter wave arrays," Proceedings of 6th European Conference on Antennas and Propagation, EuCAP 2012, 3082-3085, 2012.
doi:10.1109/EuCAP.2012.6206468

6. Cheng, Y. J., W. Hong, K. Wu, Z. Q. Kuai, C. Yu, J. X. Chen, J. Y. Zhou, and H. J. Tang, "Substrate integrated waveguide (SIW) rotman lens and its Ka-band multibeam array antenna applications," IEEE Transactions on Antennas and Propagation, Vol. 56, 2504-2513, 2008.
doi:10.1109/TAP.2008.927567

7. Ansys, Ansoft HFSS, , Canonsburg, PA, Ver. 14, Ansys Corporation, 2012.

8. Abaei, E., E. Mehrshahi, G. Amendola, E. Arnieri, and A. Shamsafar, "Two dimensional multi-port method for analysis of propagation characteristics of substrate integrated waveguide," Progress In Electromagnetics Research C, Vol. 29, 261-273, 2012.

9. Talebi, N. and M. Shahabadi, "Application of generalized multipole technique to the analysis of discontinuities in substrate integrated waveguides," Progress In Electromagnetics Research, Vol. 69, 227-235, 2007.
doi:10.2528/PIER06122107

10. Arnieri, E. and G. Amendola, "Analysis of substrate integrated waveguide structures based on the parallel-plate waveguide Green's function," IEEE Transactions on Microwave Theory and Techniques, Vol. 56, 1615-1623, 2008.
doi:10.1109/TMTT.2008.925240

11. Chew, W. C., Waves and Fields in Inhomogeneous Media, Wiley-IEEE Press, 1999.
doi:10.1109/9780470547052

12. Arnieri, E. and G. Amendola, "Method of moments analysis of slotted substrate integrated waveguide arrays," IEEE Transactions on Antennas and Propagation, Vol. 59, 1148-1154, 2011.
doi:10.1109/TAP.2011.2109356

13. Amendola, G., G. Angiulli, E. Arnieri, and L. Boccia, "Resonant frequencies of circular substrate integrated resonators," IEEE Microwave and Wireless Components Letters, Vol. 18, No. 4, 2008.
doi:10.1109/LMWC.2008.918872

14. Angiulli, G., "On the computation of nonlinear eigenvalues in electromagnetic problems," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 4, 527-532, 2007.
doi:10.1163/156939307780616838

15. Angiulli, G., E. Arnieri, D. de Carlo, and G. Amendola, "Fast nonlinear eigenvalues analysis of arbitrarily shaped substrate integrated waveguide (SIW) resonators," IEEE Transactions on Magnetics, Vol. 45, 1412-1415, 2009.
doi:10.1109/TMAG.2009.2012650

16. Amendola, G., E. Arnieri, and L. Boccia, "Analysis of lossy SIW structures based on the parallel plates waveguide Green's function," Progress In Electromagnetics Research C, Vol. 33, 157-169, 2012.

17. Huang, C. C., L. Tsang, and C. H. Chan, "Multiple scattering among vias in lossy planar waveguides using SMCG method," IEEE Transactions on Advanced Packaging, Vol. 25, 181-188, 2002.
doi:10.1109/TADVP.2002.803262

18. Xu, Z. Q., Y. Shi, P. Wang, J. X. Liao, and X. B. Wei, "Substrate integrated waveguide (SIW) filter with hexagonal resonator," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 11-12, 1521-1527, 2012.
doi:10.1080/09205071.2012.703951

19. Chen, Z., W. Hong, and J. X. Chen, "High-Q planar active resonator based on substrate integrated waveguide technique," Electronic Letters, Vol. 48, No. 10, 555-557, May 10, 2012.