Vol. 41
Latest Volume
All Volumes
PIERL 129 [2026] PIERL 128 [2025] PIERL 127 [2025] PIERL 126 [2025] PIERL 125 [2025] PIERL 124 [2025] PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2013-06-09
A Novel Tunable Antenna at THz Frequencies Using Graphene-Based Artificial Magnetic Conductor (AMC)
By
Progress In Electromagnetics Research Letters, Vol. 41, 29-38, 2013
Abstract
In this paper, a novel tunable antenna using graphene-based artificial magnetic conductor (AMC) is proposed and investigated. The resonance frequency of the AMC ground plane can be electrically tuned by applying a gate voltage. A bowtie-shaped antenna is mounted above the 15×15 AMC units. It is observed that the operating frequency of the antenna system shifts in a large range when varying the external electric field. The bandwidth of the antenna system can reach as high as 47% with a gain higher than 9 dB.
Citation
Xuchen Wang, Wen-Sheng Zhao, Jun Hu, and Tian Zhang, "A Novel Tunable Antenna at THz Frequencies Using Graphene-Based Artificial Magnetic Conductor (AMC)," Progress In Electromagnetics Research Letters, Vol. 41, 29-38, 2013.
doi:10.2528/PIERL13050203
References

1. Bray, M. G. and D. H. Werner, "A broadband open-sleeve dipole antenna mounted above a tunable EBG AMC ground plane," Int. Symp. Antennas Propag. Society, Vol. 2, No. 10, 1147-1150, 2004.        Google Scholar

2. Hu, J., C. S. Yan, and Q. C. Lin, "A new patch antenna with metamaterial cover," J. Zhejiang Univ. Sci. A, Vol. 7, No. 1, 89-94, 2006.        Google Scholar

3. Costa, F., S. Talarico, A. Monorchio, and M. F. Valeri, "An active AMC ground plane for tunable low-profile antenna," Int. Symp. Antennas Propag. Society, 1-4, San Diego, CA, 2008.        Google Scholar

4. Veysi, M. and M. Shafaee, "EBG frequency response tuning using an adjustable air-gap," Progress In Electromagnetics Research Letters, Vol. 19, 31-39, 2010.        Google Scholar

5. Zhao, L., D. Yang, H. Tian, Y. Ji, and K. Xu, "A pole and AMC point matching method for the synthesis of HSF-UC-EBG structure with simultaneous AMC and EBG properties," Progress In Electromagnetics Research, Vol. 133, 137-157, 2013.        Google Scholar

6. Padooru, Y. R., A. B. Yakovlev, C. S. R. Kaipa, G. W. Hanson, F. Medina, and F. Mesa, "Dual capacitive-inductive nature of periodic graphene patches: Transmission characteristics at low-terahertz frequencies," Phys. Rev. B, Vol. 87, 115401, 2013.        Google Scholar

7. Cook, B. S. and A. Shamim, "Utilizing wideband AMC structures for high-gain inkjet-printed antennas on lossy paper substrate," IEEE Antennas Propag. Wireless Lett., Vol. 12, 76-79, 2013.        Google Scholar

8. Geim, K. and K. S. Novoselov, "The rise of graphene," Nat. Mater., Vol. 6, 183-191, 2007.        Google Scholar

9. Hotopan, G. R., S. Ver-Hoeye, C. Vazquez-Antuna, R. Camblor-Diaz, M. G. Fernandez, F. Las Heras Andres, P. Alvarez, and R. Menendez, "Millimeter wave microstrip mixer based on graphene," Progress In Electromagnetics Research, Vol. 118, 57-69, 2011.        Google Scholar

10. Dragoman, M., A. A. Muller, D. Dragoman, F. Coccetti, and R. Plana, "Terahertz antenna based on graphene," J. Appl. Phys., Vol. 107, 104313, 2010.        Google Scholar

11. Huang, Y., L. S. Wu, and J. F. Mao, "Design of a beam reconfigurable THz antenna with graphene-based switchable high-mpedance surfaces," IEEE Trans. on Nanotechnol., Vol. 11, No. 4, 836-842, 2012.        Google Scholar

12. Tamagnone, M., J. S. Gomez-Diaz, J. R. Mosig, and J. Perruisseau-Carrier, "Reconfigurable terahertz plasmonic antenna concept using a graphene stack," Appl. Phys. Lett., Vol. 10, No. 21, 214102, 2012.        Google Scholar

13. Tretyakov, S., Analytical Modeling in Applied Electromagnetics, Artech House, Inc., 2003.

14. Luukkonen, , O., C. Simovski, G. Granet, G. Goussetis, D. Lioubtchenko, A. V. Raisanen, and S. A. Tretyakov, "Simple and accurate analytical model of planar grids and high-impedance surfaces comprising metal strips or patches," IEEE Trans. on Antennas Propag., Vol. 56, No. 6, 1624-1632, 2008.        Google Scholar

15. Hanson, G. W., "Dyadic Green's functions for an anisotropic, non-local model of biased graphene," IEEE Trans. on Antennas Propag., Vol. 56, No. 3, 747-757, 2008.        Google Scholar

16. Bolotin, K. I., K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, "Ultrahigh electron mobility in suspended graphene," Solid State Commun., Vol. 146, 351-355, 2008.        Google Scholar

17. Lovat, G., P. Burghignoli, and R. Araneo, "Low-frequency dominant-mode propagation in spatially dispersive graphene nanowaveguides," IEEE Trans. Electromagn. Compat., Vol. 55, No. 2, 328-333, 2013.        Google Scholar

18. Cui, J. P., W. S. Zhao, W. Y. Yin, and J. Hu, "Signal transmission analysis of multilayer graphene nano-ribbon (MLGNR) interconnects," IEEE Trans. on Electromagn. Compat., Vol. 54, No. 1, 126-132, 2012.        Google Scholar

19. Carrasco, E., M. Tamagnone, J. Perruisseau-Carrier, and , "Tunable graphene reflective cells for THz reflectarrays and generalized law of reflection," Appl. Phys. Lett., Vol. 102, No. 10, 10410, 2013.        Google Scholar