Vol. 43
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2013-11-07
Closed-Form Design Formulations of Arbitrary Phase Delay Crossover Based on Admittance Matrix
By
Progress In Electromagnetics Research Letters, Vol. 43, 165-173, 2013
Abstract
A design method for four-port crossover with arbitrary phase delay is proposed in this paper. This method is based on admittance matrix. Closed-form design formulations are deduced by making the structure admittance matrix equal to theoretical one. A crossover with 45˚ phase delay is designed and fabricated for theory verification. In the Butler beam forming network, this crossover has two functions for making the elimination of the 45˚ phase shifter possible and being used for circuit layout. Thus compact structure and good performance of Butler network can be realized.
Citation
Ge Tian, Jinping Yang, and Wen Wu, "Closed-Form Design Formulations of Arbitrary Phase Delay Crossover Based on Admittance Matrix," Progress In Electromagnetics Research Letters, Vol. 43, 165-173, 2013.
doi:10.2528/PIERL13071907
References

1. Zheng, N., L. Zhou, and W.-Y. Yin, "A novel dual-band II-shaped branch-line coupler with stepped-impedance stubs," Progress In Electromagnetics Research Letters, Vol. 25, 11-20, 2011.

2. Wong, Y. S., S. Y. Zheng, and W. S. Chan, "Multifolded bandwidth branch line coupler with filtering characteristic using coupled port feeding," Progress In Electromagnetics Research , Vol. 118, 17-35, 2011.
doi:10.2528/PIER11041401

3. Han, L., K. Wu, and X.-P. Chen, "Accurate synthesis of four-line interdigitated coupler," IEEE Trans. on Microw. Theory and Tech., Vol. 57, No. 10, 2444-2455, 2009.
doi:10.1109/TMTT.2009.2029630

4. Xu, H.-X., G.-M. Wang, and J.-G. Liang, "Novel CRLH TL metamaterial and compact microstrip branch-line coupler application," Progress In Electromagnetics Research C, Vol. 20, 173-186, 2011.

5. Zhang, J. and X.-W. Sun, "Harmonic suppression of branch-line and rat-race coupler using complementary spilt ring resonators (CSRR) cell," Progress In Electromagnetics Research Letters, Vol. 2, 73-79, 2008.
doi:10.2528/PIERL07122702

6. Caloz, C., A. Sanada, and T. Itoh, "A novel composite right-/left-handed coupled-line directional coupler with arbitrary coupling level and broad bandwidth," IEEE Trans. on Microw. Theory and Tech., Vol. 52, No. 3, 980-992, 2004.
doi:10.1109/TMTT.2004.823579

7. Elhiwaris, M. Y. O., S. K. B. A. Rahim, U. A. K. Okonkwo, N. M. Jizat, and M. F. Jamlos, "Miniaturized size branch line coupler using open stubs with high-low impedances," Progress In Electromagnetics Research Letters, Vol. 23, 65-74, 2011.

8. Zhu, J., Y. Zhou, and J. Liu, "Miniaturization of broadband 3-dB branch-line coupler," Progress In Electromagnetics Research Letters, Vol. 24, 169-176, 2011.

9. Sun, K.-O., S.-J. Ho, C.-C. Yen, and D. V. D. Weide, "A compact branch-line coupler using discontinuous microstrip lines," IEEE Microw. Wirel. Compon. Lett., Vol. 15, No. 8, 519-520, 2005.
doi:10.1109/LMWC.2005.852789

10. Liu, G.-Q., L.-S. Wu, and W.-Y. Yin, "A Compact microstrip rat-race coupler with modified lange and T-shaped arms," Progress In Electromagnetics Research, Vol. 115, 509-523, 2011.

11. Kim, J.-S. and K.-B. Kong, "Compact branch-line coupler for harmonic suppression," Progress In Electromagnetics Research C, Vol. 16, 233-239, 2010.
doi:10.2528/PIERC10083011

12. Kuo, J.-T. and C.-H. Tsai, "Generalized synthesis of rat race ring coupler and its application to circuit miniaturization," Progress In Electromagnetics Research, Vol. 108, 51-64, 2010.
doi:10.2528/PIER10071705

13. Park, M.-J. and B. Lee, "Design of ring couplers for arbitrary power division with 50Ω lines," IEEE Microw. Wirel. Compon. Lett., Vol. 21, No. 4, 185-187, 2011.
doi:10.1109/LMWC.2011.2112341

14. Hayati, M. and M. Nosrati, "Loaded coupled transmission line approach of left-handed (LH) structures and realization of a highly compact dual-band branch-line coupler," Progress In Electromagnetics Research C, Vol. 10, 75-86, 2009.
doi:10.2528/PIERC09041508

15. Nosrati, M. and B. S. Virdee, "Realization of a compact branch-line coupler using quasi-fractal loaded coupled transmission-lines," Progress In Electromagnetics Research C, Vol. 13, 33-40, 2010.
doi:10.2528/PIERC10031303

16. Yao, J. J., "Nonstandard hybrid and crossover design with branch-line structures," IEEE Trans. on Microw. Theory and Tech., Vol. 58, No. 12, 3801-3808, 2010.

17. Yao, J. J., C. Lee, and S. P. Yeo, "Microstrip branch-line couplers for crossover application," IEEE Trans. on Microw. Theory and Tech., Vol. 59, No. 1, 87-92, 2011.
doi:10.1109/TMTT.2010.2090695

18. Shao, J., H. Ren, B. Arigong, C. Z. Li, and H. L. Zhang, "A fully symmetrical crossover and its dual-frequency application," IEEE Trans. on Microw. Theory and Tech., Vol. 60, No. 8, 2410-2416, 2012.
doi:10.1109/TMTT.2012.2198229

19. Wong, F. L. and K. K. M. Cheng, "A novel, planar, and compact crossover design for dual-band applications," IEEE Trans. on Microw. Theory and Tech., Vol. 59, No. 3, 568-573, 2011.
doi:10.1109/TMTT.2010.2098883

20. Chiou, Y. C., J. T. Kuo, and H. R. Lee, "Design of compact symmetric four-port crossover junction," IEEE Microw. Wirel. Compon. Lett., Vol. 19, No. 9, 545-547, 2009.
doi:10.1109/LMWC.2009.2027054

21. Chen, Y. and S.-P. Yeo, "A symmetrical four-port microstrip coupler for crossover application," IEEE Trans. on Microw. Theory and Tech., Vol. 55, No. 11, 2434-2438, 2007.
doi:10.1109/TMTT.2007.908675

22. Lee, Z.-W. and Y.-H. Pang, "Compact planar dual-band crossover using two-section branch-line coupler," Electron. Lett., Vol. 48, No. 21, 1348-1349, 2012.
doi:10.1049/el.2012.2454

23. Chen, W.-L., G.-M. Wang, and C.-X. Zhang, "Fractal-shaped switched-beam antenna with reduced size and broadside beam," Electron. Lett., Vol. 44, No. 19, 1110-1111, 2008.
doi:10.1049/el:20081502

24. He, J., B.-Z. Wang, Q.-Q. He, Y.-X. Xing, and Z.-L. Yin, "Wideband X-band microstrip butler matrix," Progress In Electromagnetics Research, Vol. 74, 131-140, 2007.
doi:10.2528/PIER07042302