Vol. 43
Latest Volume
All Volumes
PIERL 129 [2026] PIERL 128 [2025] PIERL 127 [2025] PIERL 126 [2025] PIERL 125 [2025] PIERL 124 [2025] PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2013-10-17
The Band Notch Sensitivity of Vivaldi Antenna Towards CSRRs
By
Progress In Electromagnetics Research Letters, Vol. 43, 125-135, 2013
Abstract
Complementary split ring resonators (CSRRs) are applied on a UWB Vivaldi antenna to eliminate some unwanted narrow band services. Based on the sensitivity of band rejection, we successfully separate the whole radiating patch of a Vivaldi antenna into three subareas: The feeding area, where the Vivaldi antenna demonstrates a highly sensitive response to CSRRs with a narrow notching band; The transition-area, where CSRRs transfer a ultra wideband (UWB) Vivaldi into a narrow band antenna; and the rest area, where CSRRs are proved to have little effects on the antenna bandwidth property. A band notch Vivaldi antenna with 4.8 GHz to 5.4 GHz rejection band is demonstrated to verify our study from both simulated and measured results.
Citation
Xin Liu, Zhen-Ya Lei, Rui Yang, Jiawei Zhang, Lei Chen, and Xianghui Kong, "The Band Notch Sensitivity of Vivaldi Antenna Towards CSRRs," Progress In Electromagnetics Research Letters, Vol. 43, 125-135, 2013.
doi:10.2528/PIERL13080611
References

1. Cho, Y. J., K. H. Kim, D. H. Choi, S. S. Lee, and S.-O. Park, "A miniature UWB planar monopole antenna with 5-GHz band-rejection filter and the time-domain characteristics," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 5, 1453-1460, 2006.
doi:10.1109/TAP.2006.874354        Google Scholar

2. Chen, D. and C. H. Cheng, "A novel compact ultra-wideband (UWB) wide slot antenna with via holes," Progress In Electromagnetics Research, Vol. 94, 343-349, 2009.
doi:10.2528/PIER09062306        Google Scholar

3. Saleem, R. and A. K. Brown, "Empirical miniaturization analysis of inverse parabolic step sequence based UWB antennas," Progress In Electromagnetics Research, Vol. 114, 369-381, 2011.        Google Scholar

4. Cai, L. Y., G. Zeng, H. C. Yang, and Y. Z. Cai, "Integrated Bluetooth and multi-band ultra-wideband antenna," Electronics Letters, Vol. 47, No. 12, 688-689, 2011.
doi:10.1049/el.2011.1285        Google Scholar

5. Kim, J.-Y., B.-C. Oh, N. Kim, and S. Lee, "Triple band-notched UWB antenna based on complementary meander line SRR," Electronics Letters, Vol. 48, No. 15, 896-897, 2012.
doi:10.1049/el.2012.1921        Google Scholar

6. Yin, X.-C., C.-L. Ruan, S.-G. Mo, C.-Y. Ding, and J.-H. Chu, "A compact ultra-wideband microstrip antenna with multiple notches," Progress In Electromagnetics Research, Vol. 84, 321-332, 2008.
doi:10.2528/PIER08072801        Google Scholar

7. Wu, Z.-H., F. Wei, X.-W. Shi, and W.-T. Li, "A compact quad band-notched monopole antenna loaded one lateral L-shaped slot," Progress In Electromagnetics Research, Vol. 139, 303-315, 2013.        Google Scholar

8. Azim, R. and M. T. Islam, "Compact planer UWB antenna with band notch characteristics for WLAN and DSRC," Progress In Electromagnetics Research, Vol. 133, 391-406, 2013.        Google Scholar

9. Yoon, I.-J., H. Kim, H. K. Yoon, Y. J. Yoon, and Y.-H. Kim, "Ultra-wideband tapered slot antenna with band cutoff characteristic," Electronics Letters, Vol. 41, No. 11, 629-630, 2012.
doi:10.1049/el:20050876        Google Scholar

10. Hamid, M. R., P. Gardner, P. S. Hall, and F. Ghanem, "Multimode Vivaldi antenna," Electronics Letters, Vol. 46, No. 21, 1424-1425, 2010.
doi:10.1049/el.2010.2092        Google Scholar

11. Baena, J. D., J. Bonache, F. Martin, R. M. Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. Garcia-Garcia, I. Gil, M. F. Portillo, and M. Sorolla, "Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 4, 1451-1461, 2005.
doi:10.1109/TMTT.2005.845211        Google Scholar

12. Chen, Z. N., M. J. Ammann, X. Qing, X. H. Wu, T. S. P. See, and A. Cat, "Planar antennas," IEEE Microwave Magazine, Vol. 7, No. 6, 63-73, 2006.
doi:10.1109/MW-M.2006.250315        Google Scholar

13. Cheng, Y. J., W. Hong, and K. Wu, "Design of a monopulse antenna using a dual V-type linearly tapered slot antenna (DVLTSA)," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 9, 2903-2909, 2008.
doi:10.1109/TAP.2008.928797        Google Scholar

14. Yao, Y., W. Chen, B. Huang, Z. Feng, and Z. Zhang, "Analysis and design of tapered slot antenna for ultra-wideband applications," Tsinghua Science and Technology, Vol. 14, No. 1, 1-6, 2009.
doi:10.1016/S1007-0214(09)70001-X        Google Scholar

15. Mehdipour, A., K. Mohammadpour-Aghdam, and R. Faraji-Dana, "Complete dispersion analysis of Vivaldi antenna for ultra wideband applications," Progress In Electromagnetics Research, Vol. 77, 85-96, 2007.
doi:10.2528/PIER07072904        Google Scholar

16. Zhou, B., H. Li, X. Zou, and T.-J. Cui, "Broadband and high-gain planar Vivaldi antennas based on inhomogeneous anisotropic zero-index metamaterials," Progress In Electromagnetics Research, Vol. 120, 235-247, 2011.        Google Scholar

17. Velez, A., F. Aznar, J. Bonache, M. C. Velazquez-Ahumada, J. Martel, and F. Martin, "Open complementary split ring resonators (OCSRRs) and their application to wideband CPW band pass filters," IEEE Microwave and Wireless Components Letters, Vol. 19, No. 4, 197-199, 2009.
doi:10.1109/LMWC.2009.2015490        Google Scholar

18. Luo, X., H. Qian, J.-G. Ma, and E. P. Li, "Wideband bandpass filter with excellent selectivity using new CSRR-based resonator," Electronics Letters, Vol. 46, No. 20, 1390-1391, 2010.
doi:10.1049/el.2010.1817        Google Scholar

19. Zhang, Q.-L., W.-Y. Yin, S. He, and L.-S. Wu, "Compact substrate integrated waveguide (SIW) bandpass filter with complementary split-ring resonators (CSRRs)," IEEE Microwave and Wireless Components Letters, Vol. 20, No. 8, 426-428, 2010.
doi:10.1109/LMWC.2010.2049258        Google Scholar

20. Kim, J., C. S. Cho, and J. W. Lee, "5.2 GHz notched ultra-wideband antenna using slot-type SRR," Electronics Letters, Vol. 42, No. 6, 315-316, 2006.
doi:10.1049/el:20063713        Google Scholar

21. Kim, K.-T., J.-H. Ko, K. Choi, and H.-S. Kim, "Optimum design of wideband bandpass filter with CSRR-loaded transmission line using evolution strategy," IEEE Transactions on Magnetics, Vol. 48, No. 2, 811-814, 2012.
doi:10.1109/TMAG.2011.2177643        Google Scholar