Vol. 43
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2013-10-31
Development of Accurate Multi-Pole Debye Functions for Electromagnetic Tissue Modelling Using a Genetic Algorithm
By
Progress In Electromagnetics Research Letters, Vol. 43, 137-147, 2013
Abstract
The development of anatomically and dielectrically representative tissue models is key to the design and refinement of electromagnetic based diagnostic and therapeutic technologies. An important component of any such model are accurate and efficient Debye models which allow for the incorporation of the frequency dependent properties of biological tissues. The establishment of multi-pole Debye models is often a compromise between accuracy and computational cost. Furthermore, some finite difference time domain schemes impose constraints on the minimum Debye pole time-constant. In this study, the authors have developed an optimised genetic algorithm to establish Debye coefficients with minimal yet sufficient Debye poles for several different biological tissues. These Debye coefficients are fitted to existing Cole-Cole models and their accuracy is compared to previously fitted Debye models.
Citation
Finn Krewer, Fearghal Morgan, and Martin O'Halloran, "Development of Accurate Multi-Pole Debye Functions for Electromagnetic Tissue Modelling Using a Genetic Algorithm," Progress In Electromagnetics Research Letters, Vol. 43, 137-147, 2013.
doi:10.2528/PIERL13091107
References

1. Gabriel, S., R. W. Lau, and C. Gabrielm, "The dielectric properties of biological tissues: II. Measurements in the frequency range 1 Hz to 20 GHz," Physics in Medicine and Biology, Vol. 41, No. 11, 2251-2269, 1996.
doi:10.1088/0031-9155/41/11/002

2. Feliziani, M., S. Cruciani, V. de Santis, and F. Maradei, "FD2TD analysis of electromagnetic field propagation in multipole Debye media with and without convolution," Progress In Electromagnetics Research B, Vol. 42, 181-205, 2012.

3. Kelley, D. F. and R. J. Luebbers, "Piecewise linear recursive convolution for dispersive media using FDTD," IEEE Transactions on Antennas and Propagation, Vol. 44, No. 6, 792-797, 1996.
doi:10.1109/8.509882

4. Okoniewski, M., M. Mrozowski, and M. A. Stuchly, "Simple treatment of multi-term dispersion in FDTD," IEEE Microwave and Guided Wave Letters, Vol. 7, No. 5, 121-123, 1997.
doi:10.1109/75.569723

5. Young, J. L., "Propagation in linear dispersive media: Finite difference time-domain methodologies," IEEE Transactions on Antennas and Propagation, Vol. 43, No. 4, 422-426, 1995.
doi:10.1109/8.376042

6. De Santis, V., M. Feliziani, and F. Maradei, "Safety assessment of UWB radio systems for body area network by the method," IEEE Transactions on Magnetics, Vol. 46, No. 8, 3245-3248, 2010.
doi:10.1109/TMAG.2010.2046478

7. Clegg, J. and M. P. Robinson, "A genetic algorithm for optimizing multi-pole Debye models of tissue dielectric properties," Physics in Medicine and Biology, Vol. 57, No. 19, 6227-6243, 2012.
doi:10.1088/0031-9155/57/19/6227

8. Kelley, D. F., T. J. Destan, and R. J. Luebbers, "Debye function expansions of complex permittivity using a hybrid particle swarm-least squares optimization approach," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 7, 1999-2005, 2007.
doi:10.1109/TAP.2007.900230

9. Hurt, W. D., "Multiterm Debye dispersion relations for permittivity of muscle," IEEE Transactions on Biomedical Engineering, Vol. 32, No. 1, 60-64, 1985.
doi:10.1109/TBME.1985.325629

10. Fujii, M., "Maximum frequency range limit of multi-pole Debye models of human body tissues," IEEE Microwave and Wireless Components Letters, Vol. 22, No. 2, 73-75, 2012.
doi:10.1109/LMWC.2011.2180371

11. Mrozowski, M. and M. A. Stuchly, "Parameterization of media dispersive properties for FDTD," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 9, 1438-1439, 1997.
doi:10.1109/8.623134

12. Cole, K. S. and R. H. Cole, "Dispersion and absorption in dielectrics. I. Alternating current characteristics," The Journal of Chemical Physics, Vol. 9, No. 4, 341-351, 1941.
doi:10.1063/1.1750906

13. Holland, J. H., "Adaptation in natural and artificial systems," Ph.D., University of Michigan Press, Ann Arbor, MIT Press , 1975.

14. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues," Physics in Medicine and Biology, Vol. 41, No. 11, 2271-2293, 1996.
doi:10.1088/0031-9155/41/11/003

15. Lazebnik, M., M. Okoniewski, J. H. Booske, and S. C. Hagness, "Highly accurate Debye models for normal and malignant breast tissue dielectric properties at microwave frequencies ," IEEE Microwave and Wireless Components Letters, Vol. 17, No. 12, 822-824, 2007.
doi:10.1109/LMWC.2007.910465

16. Halter, R. J., T. Zhou, P. M. Meaney, A. Hartov, R. J. Barth, K. M. Rosenkranz, W. A. Wells, C. A. Kogel, A. Borsic, E. J. Rizzo, and K. D. Pa , "The correlation of in vivo and ex vivo tissue dielectric properties to validate electromagnetic breast imaging: Initial clinical experience," Physiological Measurement, Vol. 30, No. 6, S121-S136, Jun. 2009.
doi:PMID: 19491436, PMCID: PMC2792899