1. Gabriel, S., R. W. Lau, and C. Gabrielm, "The dielectric properties of biological tissues: II. Measurements in the frequency range 1 Hz to 20 GHz," Physics in Medicine and Biology, Vol. 41, No. 11, 2251-2269, 1996.
doi:10.1088/0031-9155/41/11/002 Google Scholar
2. Feliziani, M., S. Cruciani, V. de Santis, and F. Maradei, "FD2TD analysis of electromagnetic field propagation in multipole Debye media with and without convolution," Progress In Electromagnetics Research B, Vol. 42, 181-205, 2012. Google Scholar
3. Kelley, D. F. and R. J. Luebbers, "Piecewise linear recursive convolution for dispersive media using FDTD," IEEE Transactions on Antennas and Propagation, Vol. 44, No. 6, 792-797, 1996.
doi:10.1109/8.509882 Google Scholar
4. Okoniewski, M., M. Mrozowski, and M. A. Stuchly, "Simple treatment of multi-term dispersion in FDTD," IEEE Microwave and Guided Wave Letters, Vol. 7, No. 5, 121-123, 1997.
doi:10.1109/75.569723 Google Scholar
5. Young, J. L., "Propagation in linear dispersive media: Finite difference time-domain methodologies," IEEE Transactions on Antennas and Propagation, Vol. 43, No. 4, 422-426, 1995.
doi:10.1109/8.376042 Google Scholar
6. De Santis, V., M. Feliziani, and F. Maradei, "Safety assessment of UWB radio systems for body area network by the method," IEEE Transactions on Magnetics, Vol. 46, No. 8, 3245-3248, 2010.
doi:10.1109/TMAG.2010.2046478 Google Scholar
7. Clegg, J. and M. P. Robinson, "A genetic algorithm for optimizing multi-pole Debye models of tissue dielectric properties," Physics in Medicine and Biology, Vol. 57, No. 19, 6227-6243, 2012.
doi:10.1088/0031-9155/57/19/6227 Google Scholar
8. Kelley, D. F., T. J. Destan, and R. J. Luebbers, "Debye function expansions of complex permittivity using a hybrid particle swarm-least squares optimization approach," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 7, 1999-2005, 2007.
doi:10.1109/TAP.2007.900230 Google Scholar
9. Hurt, W. D., "Multiterm Debye dispersion relations for permittivity of muscle," IEEE Transactions on Biomedical Engineering, Vol. 32, No. 1, 60-64, 1985.
doi:10.1109/TBME.1985.325629 Google Scholar
10. Fujii, M., "Maximum frequency range limit of multi-pole Debye models of human body tissues," IEEE Microwave and Wireless Components Letters, Vol. 22, No. 2, 73-75, 2012.
doi:10.1109/LMWC.2011.2180371 Google Scholar
11. Mrozowski, M. and M. A. Stuchly, "Parameterization of media dispersive properties for FDTD," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 9, 1438-1439, 1997.
doi:10.1109/8.623134 Google Scholar
12. Cole, K. S. and R. H. Cole, "Dispersion and absorption in dielectrics. I. Alternating current characteristics," The Journal of Chemical Physics, Vol. 9, No. 4, 341-351, 1941.
doi:10.1063/1.1750906 Google Scholar
13. Holland, J. H., "Adaptation in natural and artificial systems," Ph.D., University of Michigan Press, Ann Arbor, MIT Press , 1975. Google Scholar
14. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues," Physics in Medicine and Biology, Vol. 41, No. 11, 2271-2293, 1996.
doi:10.1088/0031-9155/41/11/003 Google Scholar
15. Lazebnik, M., M. Okoniewski, J. H. Booske, and S. C. Hagness, "Highly accurate Debye models for normal and malignant breast tissue dielectric properties at microwave frequencies ," IEEE Microwave and Wireless Components Letters, Vol. 17, No. 12, 822-824, 2007.
doi:10.1109/LMWC.2007.910465 Google Scholar
16. Halter, R. J., T. Zhou, P. M. Meaney, A. Hartov, R. J. Barth, K. M. Rosenkranz, W. A. Wells, C. A. Kogel, A. Borsic, E. J. Rizzo, and K. D. Pa , "The correlation of in vivo and ex vivo tissue dielectric properties to validate electromagnetic breast imaging: Initial clinical experience," Physiological Measurement, Vol. 30, No. 6, S121-S136, Jun. 2009.
doi:PMID: 19491436, PMCID: PMC2792899 Google Scholar