Vol. 44
Latest Volume
All Volumes
PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2014-01-10
Optimizing the Bowtie Nano-Antenna for Enhanced Purcell Factor and Electric Field
By
Progress In Electromagnetics Research Letters, Vol. 44, 93-99, 2014
Abstract
With the development of nano-optic technology, the optical nano-antenna has been widely used in the fields of novel light sources, high-sensitive biological sensors, nanometer lithography, and nano-optical imaging. The relationship between the structural parameters of the antenna and the Purcell factor is very important for engineering applications. The electric near field profile of the antenna was calculated and analyzed by using the finite-difference time-domain (FDTD) method, and the influence of the structural parameters on the Purcell factor and the electric field was thoroughly investigated. A careful comparison of bowtie antenna radiation characteristics with different structural parameters was carried out. The results show that the thickness, the length and the curvature radius have great effects on the Purcell factor and the optical antenna's electric near field. These findings are promising for improving the performance of the optical bowtie nano-antenna.
Citation
Jie Yang, Fanmin Kong, Kang Li, and Jia Zhao, "Optimizing the Bowtie Nano-Antenna for Enhanced Purcell Factor and Electric Field," Progress In Electromagnetics Research Letters, Vol. 44, 93-99, 2014.
doi:10.2528/PIERL13091613
References

1. Barnes, W. L., A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature, Vol. 424, No. 6950, 824-830, 2003.
doi:10.1038/nature01937

2. Raether, H., "Surface Plasmons on Smooth Surfaces," Springer, 1988.

3. Ritchie, R., "Plasma losses by fast electrons in thin films," Physical Review, Vol. 106, No. 5, 874-881, 1957.
doi:10.1103/PhysRev.106.874

4. Economou, E., "Surface plasmons in thin films," Physical Review, Vol. 182, No. 2, 539-554, 1969.
doi:10.1103/PhysRev.182.539

5. Sweatlock, L., S. Maier, H. Atwater, J. Penninkhof, and A. Polman, "Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles," Physical Review B, Vol. 71, No. 23, 235408, 2005.
doi:10.1103/PhysRevB.71.235408

6. Ozbay, E., "Plasmonics: Merging photonics and electronics at nanoscale dimensions," Science, Vol. 311, No. 5758, 189-193, 2006.
doi:10.1126/science.1114849

7. Okamoto, K., I. Niki, A. Shvartser, G. Maltezos, Y. Narukawa, T. Mukai, Y. Kawakami, and A. Scherer, "Surface plasmon enhanced bright light emission from InGaN/GaN," Physica Status Solidi (A), Vol. 204, No. 6, 2103-2107, 2007.
doi:10.1002/pssa.200674856

8. Pillai, S., K. Catchpole, T. Trupke, and M. Green, "Surface plasmon enhanced silicon solar cells," Journal of Applied Physics, Vol. 101, 093105, 2007.
doi:10.1063/1.2734885

9. Yadipour, R., K. Abbasian, A. Rostami, and Z. D. Koozeh Kanani, "A novel proposal for ultra-high resolution and compact optical displacement sensor based on electromagnetically induced transparency in ring resonator ," Progress In Electromagnetics Research, Vol. 77, 149-170, 2007.
doi:10.2528/PIER07081201

10. Mortazavi, D., A. Z. Kouzani, and K. C. Vernon, "A resonance tunable and durable LSPR nanoparticle sensor: Al2O3 capped silver nano-disks," Progress In Electromagnetics Research, Vol. 130, 429-446, 2012.
doi:10.2528/PIER12052911

11. Shao, D. and S. Chen, "Direct patterning of three-dimensional periodic nanostructures by surface-plasmon-assisted nanolithography," Nano Letters, Vol. 6, No. 10, 2279-2283, 2006.
doi:10.1021/nl061712b

12. Fang, N., H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science, Vol. 308, No. 5721, 534-537, 2005.
doi:10.1126/science.1108759

13. Weeber, J.-C., E. Bourillot, A. Dereux, J.-P. Goudonnet, Y. Chen, and C. Girard, "Observation of light confinement effects with a near-field optical microscope," Physical Review Letters, Vol. 77, No. 27, 5332-5335, 1996.
doi:10.1103/PhysRevLett.77.5332

14. Park, Q.-H., "Optical antennas and plasmonics," Contemporary Physics, Vol. 50, No. 2, 407-423, 2009.
doi:10.1080/00107510902745611

15. Jiang, S.-F., F.-M. Kong, K. Li, and H. Gao, "Study of far-field directivity of optical dipole antenna," Acta Physica Sinica, Vol. 60, No. 4, 045203, 2011.

16. Degiron, A. and T. Ebbesen, "The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures," Journal of Optics A: Pure and Applied Optics, Vol. 7, No. 2, S90, 2005.
doi:10.1088/1464-4258/7/2/012

17. MÄuhlschlegel, P., H.-J. Eisler, O. Martin, B. Hecht, and D. Pohl, "Resonant optical antennas," Science, Vol. 308, No. 5728, 1607-1609, 2005.
doi:10.1126/science.1111886

18. Taminiau, T. H., R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, , "λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence," Nano Letters, Vol. 17, No. 1, 28-33, 2007.
doi:10.1021/nl061726h